
Introduction to UNIX for Biologists

Jakob Willforss

November 13, 2016
v1.6

Contents

1 Introduction to the course 6
1.1 Acknowledgements . 6
1.2 Welcome . 6
1.3 The structure of this material . 7

1.3.1 Chapters . 7
1.3.2 Chapter structure . 7

1.4 How to find help . 9
1.4.1 The man command . 9

1.5 Accessing data . 10
1.5.1 ssh . 10

1.6 Exercises . 12
1.6.1 Connect to a remote computer . 12
1.6.2 Explore the man-pages . 12
1.6.3 Finding help on the internet (*) . 13

1.7 Checkpoint . 14
1.7.1 UNIX commands . 14

1.8 Further reading . 15
1.8.1 Make command run even if you close your terminal 15

2 Introduction to the File System 16
2.1 The UNIX file system . 16

2.1.1 A brief primer on paths . 17
2.2 Important file system commands . 17

2.2.1 pwd . 17
2.2.2 ls . 18
2.2.3 cd . 19
2.2.4 Demonstration . 20

2.3 Understanding paths . 20
2.4 Use tab completion . 21
2.5 Special directories . 23

2.5.1 The root directory (/) . 23
2.5.2 The home directory (∼) . 23
2.5.3 Current directory (.) . 24
2.5.4 Parent directory (..) . 24

2.6 Exercises . 26

1

CONTENTS

2.6.1 Download the files to your home directory 26
2.6.2 Trying out the file system commands 27
2.6.3 Investigating file system . 28

2.7 Checkpoint . 29
2.7.1 UNIX commands . 29

2.8 Further reading . 30
2.8.1 Explore the system directories . 30
2.8.2 Hidden files . 30

3 Working with files in UNIX 31
3.1 Files and file formats in UNIX . 31

3.1.1 Regular text files . 31
3.1.2 Binary files . 31
3.1.3 Compressed files . 32

3.2 File commands . 32
3.2.1 mv . 32
3.2.2 cp . 34
3.2.3 rm . 35

3.3 Folder commands . 35
3.3.1 mkdir . 36
3.3.2 rmdir . 36
3.3.3 rm -r . 36

3.4 Looking inside files . 37
3.4.1 cat . 38
3.4.2 head . 38
3.4.3 tail . 39
3.4.4 less . 39

3.5 Editing text . 39
3.5.1 nano . 40

3.6 Exercises . 41
3.6.1 Make and manage your own file . 41
3.6.2 FASTA management (*) . 42

3.7 Checkpoint . 44
3.7.1 UNIX commands . 44

3.8 Further reading . 45
3.8.1 Text editors . 45

4 Working with file content 46
4.1 Important bioinformatic file formats . 46

4.1.1 The FASTA file format . 46
4.1.2 FASTQ . 46
4.1.3 GFF . 49

4.2 File content commands . 49
4.2.1 wc . 51
4.2.2 diff . 51

© Jakob Willforss 2016 2

CONTENTS

4.2.3 grep . 52
4.2.4 cut . 53
4.2.5 sort . 55
4.2.6 uniq . 57

4.3 Exercises . 59
4.3.1 Introduction to the exercise . 59
4.3.2 Exploring the FASTA file . 60
4.3.3 Exploring the FASTQ file . 60
4.3.4 Exploring the GFF file (*) . 61
4.3.5 Working with the annotation - Case study (**) 63

4.4 Checkpoint . 65
4.4.1 UNIX commands . 65

4.5 Further reading . 66
4.5.1 Converting multi-line fasta to single-line fasta 66
4.5.2 Useful tool: seqtk . 66

5 File permissions, organizing files and UNIX hygiene 67
5.1 File permissions . 67

5.1.1 chmod . 68
5.1.2 Using file permissions . 69

5.2 gzip and tar archives . 70
5.2.1 gzip . 71
5.2.2 gunzip . 71
5.2.3 tar archives . 71

5.3 Downloading files . 73
5.3.1 wget . 73

5.4 Symbolic file links . 74
5.4.1 ln -s . 74

5.5 UNIX hygiene . 76
5.5.1 Backup your data . 76
5.5.2 Proper organization of your files . 76
5.5.3 Document your analyses . 77
5.5.4 Name your files properly . 77

5.6 Exercises . 78
5.6.1 Download the files to your home directory 78
5.6.2 chmod . 78
5.6.3 Symbolic links . 79
5.6.4 Further work (*) . 79

5.7 Checkpoint . 81
5.7.1 UNIX commands . 81

5.8 Further reading . 82
5.8.1 Backup tool: rsync . 82
5.8.2 Organizing projects . 82

© Jakob Willforss 2016 3

CONTENTS

6 Working with file streams 83
6.1 What are file streams? . 83

6.1.1 echo . 84
6.2 Redirecting input and output . 84

6.2.1 Standard output . 84
6.2.2 Standard error . 85
6.2.3 Standard input . 86

6.3 The pipe . 86
6.4 Filters . 87

6.4.1 tr . 87
6.4.2 sed . 87

6.5 Exercises . 90
6.5.1 Extracting information from GFF . 90
6.5.2 Stream editing . 90
6.5.3 Useful pipes . 92
6.5.4 The gene-count mystery (**) . 94

6.6 Checkpoint . 95
6.6.1 UNIX commands . 95

6.7 Further reading . 96
6.7.1 The tee command . 96
6.7.2 awk . 96

7 Pattern matching, variables, subshells and loops 97
7.1 Pattern matching . 97

7.1.1 Pattern matching UNIX paths . 97
7.1.2 Using pattern matching with grep . 99

7.2 Variables . 101
7.2.1 What is a ’variable’? . 101
7.2.2 Variables in UNIX . 101

7.3 Subshells . 104
7.4 Loops . 104

7.4.1 Looping over a set of files . 105
7.5 Exercises . 108

7.5.1 Variables and subshells . 108
7.5.2 Loops and pattern matching . 109
7.5.3 Working with multiple files at once 110
7.5.4 Processing multiple files (**) . 111

7.6 Checkpoint . 113
7.6.1 UNIX commands . 113

7.7 Further reading . 114
7.7.1 Variable expansion . 114
7.7.2 Regular expressions . 114

© Jakob Willforss 2016 4

CONTENTS

8 Introduction to scripting 115
8.1 Bash and scripting . 115
8.2 Building a simple Bash script . 115

8.2.1 Comments in Bash scripts . 116
8.3 Gathering processing steps in a script . 117
8.4 Providing input to a script . 118
8.5 Exercises . 121

8.5.1 Hello, world! . 121
8.5.2 Retrieving information from a FASTA 122
8.5.3 Building a useful script on your own (*) 122

8.6 Checkpoint . 123
8.6.1 UNIX commands . 123

8.7 Further reading . 124
8.7.1 The PATH variable . 124
8.7.2 Further learning materials . 124

© Jakob Willforss 2016 5

Chapter 1

Introduction to the course

1.1 Acknowledgements

This course material has been written for the course ”Introduction to UNIX for Biologists”
given by the National Bioinformatics Infrastructure in Sweden in collaboration with the
organizations PlantLink and Geneco.

Dag Ahrén has contributed with the exercises for the chapter on file permissions and
UNIX hygiene.

Thank you Ellen Sunström, Jonatan Leo, Johan Philipsson and Dag Ahrén for providing
comments, thoughts and proof-reading of the material. You have made it better!

1.2 Welcome

Welcome to this introduction to using the UNIX terminal. The UNIX terminal is a powerful
tool, and it can be especially useful when working with raw text - which commonly is the
case when working with biological data. This material has the aim to:

• Provide an insight into what is possible with the UNIX terminal.

• Give enough hands-on practice to make you feel comfortable working with biological
data in UNIX.

• Provide a foundation for further study of more advanced UNIX-based bioinformatic
tools.

The UNIX terminal is found on many computers. It is tightly integrated with the Linux
operating systems, and it is readily available on OSX (Mac) - based systems.

Recently even Microsoft has started natively supporting the UNIX terminal as a devel-
oper tools. If you are using the latest version of Windows 10 you can activate this feature
by following the steps outlined in the link:
www.howtogeek.com/249966/how-to-install-and-use-the-linux-bash-shell-on-windows-10/

Large-scale computational clusters (like UPPMAX) are commonly based on Linux servers
and accessed through the UNIX terminal, making it an invaluable tool for researchers per-
forming any type of data processing.

6

www.howtogeek.com/249966/how-to-install-and-use-the-linux-bash-shell-on-windows-10/

CHAPTER 1. INTRODUCTION TO THE COURSE

Many important bioinformatic tools are designed to be used in the UNIX terminal as the
terminal provides a flexibility which is hard to reproduce in a graphical user interface. It is
a central tool for the field, and it seems like that isn’t going to change any time soon.

1.3 The structure of this material

1.3.1 Chapters

This material is divided into eight chapters.

1 - Introduction to the course Overview of this course, how to get help, and how to
connect to other computers.

2 - Introduction to the file system Understand and navigate the UNIX file system.

3 - Working with files in UNIX Move, copy, read and edit files and compressed files.

4 - Working with file content Bioinformatic file formats, and how to extract information
from them.

5 - File permissions, organizing files and UNIX hygiene Tools and best practices for
managing files and projects in a UNIX environment.

6 - Working with file streams Reading and writing files, and combining commands.

7 - Pattern matching, variables, subshells and loops Automate your analysis and get
the computer to do more of the work.

8 - Introduction to Scripting Make your analyses reproducible by allowing later re-processing,
and develop your own tools.

We will initially go through important UNIX fundamentals (chapters 1, 2 and 3). Then,
we will introduce tools for and ways of processing biological data (chapter 4, 5 and 6). Finally,
we will introduce some UNIX concepts used to automate your analysis which reduces the
effort needed to process your data while increasing reproducibility (chapter 7 and 8).

1.3.2 Chapter structure

Each chapter contains the following parts:

• Presentation of concepts and commands, demonstrated by examples.

• Exercises. More challenging exercises are marked with asterisks (*) and can be skipped
if in a hurry. They provide deeper learning for those who have the time.

• A recap page for evaluating your understanding of the introduced concepts and com-
mands.

• Further reading material for the interested reader. This reading material extends
outside the scope of this course.

© Jakob Willforss 2016 7

CHAPTER 1. INTRODUCTION TO THE COURSE

Introducing commands

An example of how a command could be introduced is shown in figure 1.1. The syntax used
here is:

• <input_file> Angular brackets means that the input is required for the option or the
command.

• -l Required input arguments (flags) are shown without brackets.

• [-l] Optional flags or inputs are shown in square brackets. When running the com-
mand, type the flag without the square brackets.

Optional arguments are not required to run the command, but can often change the
behaviour of the command in useful ways.

list directory contents Command usage: ls [-l] [-lh] [<directory_to_list>]

ls lists the files in a directory. If no directory is provided, lists the files in the present
working directory. If you want more extensive information about the files, you can
add the -l flag to the command. If you want the file sizes in a more readable format,
you can add the -h flag to the -l flag.

Figure 1.1: Example command description.

Each command is introduced together with the following information:

• Mame of the command.

• Meaning of the command (cd - change directory).

• Usage examples for the command.

Colored boxes

You will encounter red, green and blue boxes in the text. The purpose of those are:

red Important note or advice.

green Example file used to demonstrate commands.

blue Technical information about command options, file formats or similar.

© Jakob Willforss 2016 8

CHAPTER 1. INTRODUCTION TO THE COURSE

1.4 How to find help

When encountering problems with the UNIX commands, you can usually found more infor-
mation in the following ways:

• Use the man command on your command to learn more about its meaning and usage
(this is shown later in this chapter).

• Use a search engine (like Google) to find discussions about similar problems. Good
search queries includes the command, specifics about the issue (example: part of the
error message) and potentially the word ”unix” or ”linux” if your search matches
unrelated topics.

• Ask someone with more experience about the problem. In many cases they have
encountered and solved the same problem.

Make sure to do a bit of research using the man-pages and a search engine before handing
over the question to someone else. This helps training debugging skills, provides a deeper
insight into the system and lets you better understand the problem when you receive the
solution.

If your problem is related to processing biological information, there are some web sites
dedicated to help:

Seqanswers.com Large traditional forum with an extensive number of existing help threads,
as well as a lively community.

BioStars.org More direct question / answers site which is used extensively for bioinformatic
problems.

BioSupport.se Site run by NBIS which makes sure that you’ll get a response and that it
comes from an expert in the field.

1.4.1 The man command

an interface to the online reference manuals
Command usage: man <target_command>

The man command retrieves information about the target command that you are inter-
ested in. When running it, it opens up the manual within the terminal. The manual pages
both contains descriptions about the commands, and information about the options that are
available for the command.

In the gray box below you see an example of running the man command in a terminal
prompt. This is seen in the line starting with the $. The line starting with a # is not part
of the command or the output. It is a comment describing what is going on for you, dear
reader.

© Jakob Willforss 2016 9

CHAPTER 1. INTRODUCTION TO THE COURSE

$ man ls

This opens up a manual page for the ls command

Note

The man-pages is opened in the text reader less. You will learn more about less in
chapter 3.

• You can exit the man-pages by pressing ”q”.

• You can search the man-pages by typing ”/”, followed by the text you want to
search for and then return. You can then use ”n” and ”N” to jump forward and
backwards between matches.

1.5 Accessing data

We are using the SSH network protocol (a network protocol is way of communicating between
computers) to connect to the server computer during this course.

If working on a Linux- or OSX-based machine, you can connect to the server computer
using the ssh command. If you are working on a Windows-based machine and haven’t
activated the Bash feature on Windows 10, you will need to download an SSH-client for
Windows like MobaXTerm (mobaxterm.mobatek.net) or PuTTy (putty.org).

1.5.1 ssh

OpenSSH SSH client (remote login program)
Command usage: ssh [-v] <user>@<remote_address>

The ssh command uses the SSH protocol to connect to a remote computer. The remote
is a computer you are logging in to from your current computer. The address is built from
your user name and the host address separated by a @ (username@hostaddress).

If someone with the username ”jakob” wants to connect to a particular computer with the
IP address 130.232.46.00 (IP addresses - Internet Protocol addresses are used by computers
to find each other over the internet), he could do the following:

© Jakob Willforss 2016 10

mobaxterm.mobatek.net
putty.org

CHAPTER 1. INTRODUCTION TO THE COURSE

$ ssh jakob@130 .232.46.00

jakob@130 .232.46.00 ’s password:

Login successful , welcome to the computer!

[jakob@130 .232.46.00]$
We are now logged in to the remote computer

[jakob@130 .232.46.00]$ exit

logout

Connection to 130.232.46.00 closed.

$
We are now back on our local computer

When entering passwords in UNIX nothing shows up in the terminal. The letters are still
registered by the computer. Just type the password and then hit ”Enter”. You can close a
connection to a remote computer by typing ”exit”.

Note

Some information about the code examples:

• Text coming after #-signs in the code examples are comments. This is a common
way of showing that what comes after the sign will not be run by the computer.

• Lines starting with $ shows the commands we run in the examples. In this
example we ran the command: ssh jakob@130.232.46.00.

• Other lines shows the resulting output received from the command.

• Commands are colored in blue, comments in red.

If you have trouble connecting using ssh you can try adding the -v flag (v for verbose)
which provides detailed information about what the ssh command is doing. In this example,
the command would have been: ssh -v jakob@130.232.46.00

© Jakob Willforss 2016 11

CHAPTER 1. INTRODUCTION TO THE COURSE

1.6 Exercises

The goal with the exercises for this chapter is to get your connection to the remote computer
up and running, and for you to get acquainted with how to find help.

The exercises with asterisks (*) are more challenging, and can be skipped if you are in a
hurry.

A useful hint when working in the terminal:

• You can go back to and edit commands which you previously have been running by
using the up / down arrows in the terminal.

1.6.1 Connect to a remote computer

1. Run the SSH command from your computer to connect to the remote computer. If
you are using a Windows machine, this will require you to download MobaXTerm
(mobaxterm.mobatek.net) or PuTTy (putty.org). Use the ssh command to connect
to the server. You need to have an account on a Linux-server to do this step.

In the examples below ’username’ should be your user on the server, and ’host ip’ either
the server’s IP address (similar to ”130.235.00.00”) or the server’s domain (similar to
a web address, not always available).

$ ssh username@host_ip

This will prompt you for a password. No asterisks show up when you enter the password
- type it out and press enter. After logging in, you are able to close the connection by
running:

$ exit

2. * Try running the SSH command with the -v flag argument. This argument often
provides valuable information if you have trouble logging in.

$ ssh -v username@host_ip

1.6.2 Explore the man-pages

Hint: You exit the man-pages by pressing ”q”. You can search the man pages by typing ”/”
followed by the search word. Then ”n” or ”N” can be used to get next or previous hit.

1. Try using the man command on the man command and the ssh command.

$ man ssh

© Jakob Willforss 2016 12

mobaxterm.mobatek.net
putty.org

CHAPTER 1. INTRODUCTION TO THE COURSE

1.6.3 Finding help on the internet (*)

You will frequently come to a situation where you wonder if something is possible, but where
you don’t know exactly how to do it. Sometimes the answer will be a particular option in
the man-pages. Other times, you will have to search a bit more.

Say for example that you want to know how to copy files between two Linux computers.
There are many ways to approach this. Perhaps the best place to start is to go straight for
Google and type a search query similar to the following:

how to copy files between linux computers

Check the first few hits. Did you find any good ways? There will definitely be some good
approaches among them. A habit of searching online for answers and solutions is a great
asset for anyone working with computers.

© Jakob Willforss 2016 13

CHAPTER 1. INTRODUCTION TO THE COURSE

1.7 Checkpoint

Before you continue, make sure that you can answer the following:

• How will you approach future problems and errors in UNIX?

• How do you connect to a remote computer from your laptop?

1.7.1 UNIX commands

Consider each command for a second. Make sure that you have an idea about what they do
before moving on. We will build a collection of commands in the coming chapters.

Chapter 1 - Introduction to UNIX

man

ssh [-v]

© Jakob Willforss 2016 14

CHAPTER 1. INTRODUCTION TO THE COURSE

1.8 Further reading

This material reaches outside the scope of this course. If you are interested and have the
time this material might give you useful tools and insights. If not, save it for another time.

1.8.1 Make command run even if you close your terminal

When working in UNIX, you sometimes want your command to stay running even after you
have left the computer and shut down the terminal. This can be achieved by: using the
nohop command, together ending the command with the & - sign. This allows you to close
the connection to a server without shutting down the commands that you are running.

$ nohup yourcommand &

The command shown above tells UNIX to both continue running your command after
you closed your terminal (nohup) and that the terminal should let go of the command so
that you can continue running other commands (&). Bioinformatic programs can often run
for hours or days. In these cases, nohup definitely comes in handy.

http://www.computerhope.com/unix/unohup.htm

© Jakob Willforss 2016 15

http://www.computerhope.com/unix/unohup.htm

Chapter 2

Introduction to the File System

2.1 The UNIX file system

When navigating the UNIX system, you always have a present working directory. This is
the directory that you currently are looking into. This can be compared to having a certain
folder open in for example Windows or Mac.

Figure 2.1: Subset of UNIX file system

All the files and directories in UNIX are organized in a tree-like structure. At the root
of the tree, there is the root-directory (shown as ”/” in the figures). The root directory is

16

CHAPTER 2. INTRODUCTION TO THE FILE SYSTEM

the only directory which doesn’t have a parent directory. All other directories have a parent
which is shown with arrows in the figures. Each directory can contain an arbitrary number
of files and other directories. Each file and directory is located within a directory (except
the root directory).

2.1.1 A brief primer on paths

You navigate and interact with files using paths. A path is a way of specifying the location
of a file or directory.

A path to a file in the file system shown in figure 2.1:

/home/jakob/Documents/MyReport.pdf

In this case, we started out in the root, traversed the home, jakob and Documents direc-
tories and finally found the file we were looking for. Take a look at the figure and make sure
that you can trace the path from the root to MyReport.pdf

A path to a directory:

/home/jakob/Documents

In this case we traversed the home and jakob directories before stopping at our desired
directory.

A path can traverse zero or more directories, and ends in either a directory or a file.
Each directory/file is separated by a slash. The paths can either start in the root (as in the
examples above) or in the present working directory.

We will dig further into different types of paths and how to use them in section 2.3 after
introducing some file system commands.

2.2 Important file system commands

This is a core set of commands used to investigate and navigate the file system. We will be
investigating the file system shown in figure 2.1. Make sure to understand the commands,
you will be using them a lot.

2.2.1 pwd

print name of current/working directory
Command usage: pwd

pwd prints your current position in the file tree.
Example:

$ pwd

/home/jakob

© Jakob Willforss 2016 17

CHAPTER 2. INTRODUCTION TO THE FILE SYSTEM

Note

The pwd command only shows your current location. It doesn’t change the working
directory. It is only used to keep track of where you currently are.

2.2.2 ls

list directory contents
Command usage: ls [-l], [-lh] [<directory_to_list>]

ls lists the files in directory. If no directory is specified, it lists the files in the present
working directory. If you want more extensive information about the file permissions, own-
ership, size and age, you can add the -l flag to the command. If you want the file sizes in a
more readable format, you can add the -h flag to the -l flag.

Note

A flag argument is an extra option which can be provided to a command, telling the
command to perform a specific task. Flag arguments are added after the command
and (for most UNIX commands) consists of a dash and a letter. In the command
ls -l we run the command ls and gives it the flag argument -l.

In the gray box below you see some usage examples for the ls command. The lines
starting with $ contain the commands. The following lines are the responses from the
program. Lines starting with # are not run - They only contain descriptive information.

$ ls

Desktop Documents Music

$ ls Documents

MyArticle.pdf MyReport.pdf

$ ls -l Documents

-rw -r----- 1 user user 687438 sep 16 19:02 MyArticle.pdf

-rw -r----- 1 user user 2481860 may 13 14:05 MyReport.pdf

$ ls -lh Documents

-rw -r----- 1 user user 672K sep 16 19:02 MyArticle.pdf

-rw -r----- 1 user user 2.4M may 13 14:05 MyReport.pdf

Note that the file sizes are written differently here

The output from ls -l contains information about:

1. File permissions

© Jakob Willforss 2016 18

CHAPTER 2. INTRODUCTION TO THE FILE SYSTEM

Note

The l in the -l flag in the ls -l command is a lower case instance of the letter L,
not the digit one (1). The font used in the code examples caused some confusion here.
Keep this in mind for coming chapters too.

2. Number of files in directories (1 for files)

3. To which user and group the file belongs

4. The file size

5. The last time the file was changed

6. The name of the file

We will revisit file permissions in a later chapter.

Wild-card matching

Another important concept is wild card matching using the * symbol. Many UNIX com-
mands interpret this symbol as one or more characters of any kind (except line breaks). This
can be used with ls to list a subset of files. In the following example, D* matches Desktop

and Documents, but not Music which doesn’t match the initial ’D’.

$ ls D*

Desktop Documents

There are other patterns available for more detailed control of what files you match. We
will go through those in more detail in a later chapter.

2.2.3 cd

change directory
Command usage: cd <target_directory>

The cd-command changes your present working directory. You tell it what location you
want to change to by providing it the path to that location: cd <path to location>.

$ pwd

/home/jakob

$ cd Documents

$ pwd

/home/jakob/Documents

In this example, you started out in the home directory for the user jakob. After changing
directory, your present working directory is Documents, a directory residing in the jakob

directory. See figure 2.2 and figure 2.3 for visualization.

© Jakob Willforss 2016 19

CHAPTER 2. INTRODUCTION TO THE FILE SYSTEM

Figure 2.2: Present working directory before
running ”cd Documents”

Figure 2.3: Present working directory after
running ”cd Documents”

2.2.4 Demonstration

Here, some investigation is done of the home directory. Look at figure 2.2 and 2.3, and make
sure that you can follow how the command and their output relates to the figures.

$ pwd

/home/jakob

$ ls

Desktop Documents Music

$ ls Documents

MyReport.pdf MyArticle.pdf

$ cd Documents

$ pwd

/home/jakob/Documents

$ ls

MyReport.pdf MyArticle.pdf

2.3 Understanding paths

When navigating the UNIX file system, you always have a present working directory which
you find by running pwd. You are able to reach other files on the computer in two ways.

• Using its absolute path, the exact location in the computer - starting from the root
directory

© Jakob Willforss 2016 20

CHAPTER 2. INTRODUCTION TO THE FILE SYSTEM

• Using the relative path between the file and your present working directory

Figure 2.4: Accessing ”Documents” by its
absolute path

Figure 2.5: Accessing ”Documents” from
/home/jakob by its relative path

In the example below, the documents directory is first listed using its absolute path.
Then, with the present working directory as /home/jakob, it is listed through its relative
path. This is illustrated in figure 2.4 and figure 2.5.

Listing Documents using its absolute path

$ ls /home/jakob/Documents

MyReport.pdf MyArticle.pdf

Listing Documents using its relative path from /home/jakob

$ pwd

/home/jakob

$ ls Documents

MyReport.pdf MyArticle.pdf

You can always reach a directory either using its absolute path or the relative path from
your present working directory. Which is most convenient depends on the situation.

Paths can traverse the file tree in both directions, which can be especially useful for
relative paths. You will learn more about this later in this chapter.

2.4 Use tab completion

Using the terminal means that you will do a lot of typing. Often, you will be typing long
file names and long paths to files. There is a feature in UNIX called tab completion which

© Jakob Willforss 2016 21

CHAPTER 2. INTRODUCTION TO THE FILE SYSTEM

Note

Remember - The arrows in the figures shows the parent folder for each folder or file.
Paths usually go the other direction, from parent to child.

helps you do this more efficiently and with less typing errors, This allows you to write part
of the file names and then let the computer expand it for you by pressing the tab-key.

You use tab completion by single- and double-tapping the tab key.

• After a single tap, the computer will attempt to figure out the entire file name which
you have started writing. If there only is one possible match, it will write out the
entire file name. If not, it will write out the part of the file name that is common for
the possible matches.

• After a double tap, the computer will write out all possible files matching the letters
you have already written. Often, you can follow up by typing a single unique letter
before pressing the tab key again, expanding the rest of the file name.

$ pwd

/home/jakob

$ ls

Desktop Documents Music

Typing an M followed by tab will expand the word to Music ,

as it is the only file/directory starting with "M"

$ M <tab >

$ Music

If there are multiple options , nothing will happen on the

first press

$ D <tab >

$ D

On the second press , all alternatives will be listed

$ D <tab ><tab >

Desktop Documents

This tells you what to write next , and you can complete

the tab completion

$ De <tab >

$ Desktop

You will likely want to tab complete most of the files and commands you are typing.
This will save you a lot of time (and sanity). So, make sure to tab complete. Tell all your
friends to do it too.

© Jakob Willforss 2016 22

CHAPTER 2. INTRODUCTION TO THE FILE SYSTEM

Once more. Use tab completion.

2.5 Special directories

In the UNIX system, there are some directories that are special. Those directories have
special ways to access them.

2.5.1 The root directory (/)

We have already discussed the root directory. It is represented by a forward slash (/). This
is the highest parental directory for every directory and file in the computer. We have shown
how it can be used to access any file based on the file’s relation to the root.

$ pwd

/home/jakob

$ ls /home

jakob karin

Here, we investigated the content of the home directory, using its absolute path.

2.5.2 The home directory (∼)

Each user on a UNIX system has its own home directory. It is located at /home/<username>,
where <username> is the username of the current user. In the previous examples, the user
name has been jakob. When logging into UNIX using SSH, you will always start out in
your home directory.

The home directory also has its own sign - tilde (∼). If you are unsure about how to
type this sign on your computer, check figure 2.6.

On a Swedish PC keyboard, tilde can be typed by pressing the following:

• Press AltGr + The key left of the return button (you can see a small tilde on it,
together with a hat, and two dots)

• Press space

On a Swedish Mac keyboard, tilde is typed by pressing Alt + ^

Figure 2.6: Typing the character tilde

You can access the home directory similarly to how we previously accessed files through
their absolute paths. You can think of it as a shorter way of writing out the path to your home
directory: /home/jakob. The following three ls commands all access the same directory.

© Jakob Willforss 2016 23

CHAPTER 2. INTRODUCTION TO THE FILE SYSTEM

$ pwd

/home/jakob

Using a relative path

$ ls Documents

MyReport.pdf MyArticle.pdf

Using the absolute path

$ ls /home/jakob/Documents

MyReport.pdf MyArticle.pdf

Starting from home path

$ ls ~/ Documents

MyReport.pdf MyArticle.pdf

2.5.3 Current directory (.)

Each directory also can refer to itself using the single-dot notation (.) This allows you
to specify the working directory as input argument to commands. When running the ls

command without input arguments, it per default refers to the current directory.

If we provide . to ls, we list our current directory

$ ls

Desktop Documents Music

$ ls .

Desktop Documents Music

If we provide . to cd, we change to our current directory

$ pwd

/home/jakob

$ cd .

$ pwd

/home/jakob

We will revisit this notation in more a useful context in the chapter about writing scripts.

2.5.4 Parent directory (..)

Each directory (except the root) has a parent directory. This directory can be accessed
by typing two dots: .. The ..-notation lets you access the parent directory to the present
working directory.

© Jakob Willforss 2016 24

CHAPTER 2. INTRODUCTION TO THE FILE SYSTEM

$ pwd

/home/jakob

$ ls ..

jakob karin

$ cd ..

$ pwd

/home

The parent directory to the home directory (in this case jakob) is the directory home.
We can change directory to the parent directory by the command cd .. We can list the files
in the current parent directory by running ls .. We can access other directories with the
same parent by starting the path with .., before navigating down a parallel directory. Take
a look at figure 2.7 and make sure that you can follow the example.

$ pwd

/home/jakob

$ cd ../ karin

$ pwd

/home/karin

$ ls ../ jakob/Documents

MyReport.pdf MyArticle.pdf

Here, we first changed directory to the home directory of the user karin, before we used
a relative path to list the Documents content. This is visualized in figure 2.7

© Jakob Willforss 2016 25

CHAPTER 2. INTRODUCTION TO THE FILE SYSTEM

Figure 2.7: Accessing Documents by relative path, passing through parent

2.6 Exercises

The purpose of this exercise is to make you comfortable with navigating between directories
and files in the terminal. You will also learn how to retrieve and unpack the exercise files
from a server computer.

2.6.1 Download the files to your home directory

The files used for the exercises are stored in tar archives on a Linux server. We will go
through the commands used here in more depth in a later chapter. For now, just follow the
steps to get the files (if you are very curious, take a look in the man pages!).

We will use the wget command to download the FASTQ file from the Linux server on
which they are stored. Run the following command from your home directory:

$ wget http ://130.235.244.56/ unix/tarballs/unix_course_chapter2.tar.gz

Be aware that if you copy this path directly from the PDF you might end up with
additional spaces within the path. The command will not work unless you remove those
spaces.

The path to the exercise can also be found by going to the web page 130.235.244.56/

unix, right-clicking on ”Exercise files chapter 2” and choosing ”Copy link address”. This
can then be pasted into the terminal by right-clicking and choosing ”paste”.

© Jakob Willforss 2016 26

130.235.244.56/unix
130.235.244.56/unix

CHAPTER 2. INTRODUCTION TO THE FILE SYSTEM

A copy of the tar archive should now be located in your current directory. Check by
using ls:

$ ls

In order to extract the directory from the tar archive, we use the tar command.

tar -xf unix_course_chapter2.tar.gz

Run ls to check that you have a directory named unix_course_chapter2 in your home
directory. This directory contains the exercise files used in this chapter.

2.6.2 Trying out the file system commands

There are three central commands introduced in this chapter: pwd, ls and cd. Let’s get
acquainted with them.

1. Run the command pwd. This is your present working directory. You can run this
command at any time to keep track of where you are.

2. Now run the command ls in the same directory. This will show you what files and
folders there are in your directory.

3. Next, let’s change directory to the exercise directory using cd.

$ cd unix_course_chapter2

After changing directory, check what your current working directory is, and what files
there are in this directory.

4. You can always go back by using cd .. This moves you up one step to the parent
directory. Go back up one step.

5. You can list the content of the exercise directory while your working directory still is
your home directory by running the following:

$ ls unix_course_chapter2

Experiment with these commands until you feel comfortable using them. You will be
using them frequently during this entire course. Start practicing now.

© Jakob Willforss 2016 27

CHAPTER 2. INTRODUCTION TO THE FILE SYSTEM

2.6.3 Investigating file system

Inside the directory containing the exercises, there is a directory called file_tree. This di-
rectory contains a number of directories and files. Your job is to locate the file print_this_with_cat.txt,
and print its content. Its content can be printed using the cat command (when your present
working directory is the same as the file):

cat print_this_with_cat.txt

This command will be introduced further in the next chapter. Also, don’t forget to use
tab completion.

1. First, navigate down the directories one by one. Keep track of your working directory
with pwd, list the available directories with ls and change directory to the correct one
using cd The names of the directories guides you to the correct directories. Are you
able to find the file?

2. After finding the file, back up to the starting directory. Can you do this with a single
command?

3. Now, let’s try this again this without using pwd, ls or cd. Start by typing cat followed
by a space, and then see if you can type out the entire path to the file with the help
of tab completion.

4. * We used relative paths in exercise 1 and 3 to reach the file. Now, let’s print it using
its absolute path. Use either the root (/) or you home directory (~) as base. Can you
see when this approach could be more useful?

© Jakob Willforss 2016 28

CHAPTER 2. INTRODUCTION TO THE FILE SYSTEM

2.7 Checkpoint

Before you continue, go through the following questions (even better, grab a classmate and
discuss):

• What are the differences between absolute and relative paths?

• What is the root directory and what is the home directory?

• How can you change directory to or list a parent directory?

• What can the tilde sign (∼) be used for?

2.7.1 UNIX commands

Consider each command for a second. Make sure that you have an idea about what they do
before moving on.

Chapter 1 - Introduction to UNIX

man

ssh [-v]

Chapter 2 - Introduction to the file system

cd

ls [-l] [-lh]

pwd

© Jakob Willforss 2016 29

CHAPTER 2. INTRODUCTION TO THE FILE SYSTEM

2.8 Further reading

Note that this material is outside the scope of this course. Only do it if you have the time
and the interest.

2.8.1 Explore the system directories

Lets take a look into what resides beneath your home directory. Your home directory is
yours, and contains your files. There is a lot more things going on in a UNIX computer,
which can be found in the directories directly beneath the root. As a regular user you are
in most cases not able to edit the system files, but you can in many cases explore and read
configuration files and log files. This is often useful for trouble shooting, especially if you
are running a UNIX system on your own computer.

1. * Change directory to the root. You can do this either by going up two steps from your
home directory (relative path) or change directly to the root by typing cd / (absolute
path).

2. * Change directory to /var/log. Here is the default location for so called log files,
which contains status information from different programs running on the computer.

3. * List the content of /home. Your entire home directory is located on a branch of the
entire file tree as one of the directories in home.

4. * Now change directory to /bin. Do you recognize any of the files here?

The following link gives an overview of the purpose of the many system directories.

http://www.thegeekstuff.com/2010/09/linux-file-system-structure/

2.8.2 Hidden files

Something which we haven’t been discussing in this chapter is hidden files. In UNIX, files
for which the name starts with a dot (.) are hidden files. To list all files including the hidden
ones, run the ls command with its -a flag (all). If you do this in your home directory, you
will see that there is a lot more files present there compared to how it appears when running
the regular ls.

Those hidden files commonly contains configuration information specific for your user.
Some of them (.bashrc and .bash_profile) also contains commands which are run when
logging in to your user or starting a new terminal. You can add commands here, and cus-
tomize the behaviour of your terminal. See the following link for some discussion on useful
changes to those two files. You could for example use aliases to add custom commands (for
example: alias ..="cd .." would allow you to change directory to the parent directory
by simply typing ”..”). But, be a bit careful here, and only add commands which you know
what they do.

https://www.quora.com/What-are-some-useful-bash_profile-and-bashrc-tips

© Jakob Willforss 2016 30

http://www.thegeekstuff.com/2010/09/linux-file-system-structure/
https://www.quora.com/What-are-some-useful-bash_profile-and-bashrc-tips

Chapter 3

Working with files in UNIX

3.1 Files and file formats in UNIX

In Linux, everything is a file. We are mainly working with text files and directories in this
course, but you will also encounter binary files and compressed files.

3.1.1 Regular text files

Regular text files only contain text characters. This is a common way of storing bioinformatic
data. The files can be opened with a text editor and the content can be seen and understood
directly, without any use of other tools.

3.1.2 Binary files

Binary files are files written in ”binary code” - the computer’s language. When you are
typing UNIX commands into the terminal, you are telling the computer to run a particular
binary file. If you accidentally open a binary file with a tool designed for plain text, you get
output similar to what is shown in figure 3.1.

Figure 3.1: Inspecting the ls binary

If you encounter similar output when investigating files, you have likely encountered a

31

CHAPTER 3. WORKING WITH FILES IN UNIX

non human-readable file. This could be a binary file, a compressed file, an image file or
something else.

3.1.3 Compressed files

Another frequently used format in UNIX is compressed files. This is a common way of
storing bioinformatic data. Bioinformatic data can easily use tens or hundreds of gigabytes
of hard drive space, which makes it essential to store the data in compressed format.

Many of the current bioinformatic tools are able to read and output compressed formats
directly, removing the need for ever storing decompressed files on the hard drive.

On UNIX, two common way of storing compressed data is as Gzipped files and as tar-
archives.

3.2 File commands

We will now go through some of the central file commands used to move, copy, read or
remove.

3.2.1 mv

move (rename) file
Command usage: mv (-i) <target_file> <end_location>

The command mv moves a desired file to a target location. This command can be used
for two different purposes:

• Move a file to a different location

• Rename a file

You can both move and rename a file in one command. If the file is directed to a directory,
it will be moved into that directory retaining its initial name. If you write out a new file
name for the end location, the file will gain that new name.

$ mv my_file.txt my_renamed_file.txt

See figure 3.2.

$ mv my_file.txt Docs/

See figure 3.3.

$ mv my_file.txt Docs/my_renamed_file.txt

See figure 3.4.

© Jakob Willforss 2016 32

CHAPTER 3. WORKING WITH FILES IN UNIX

Figure 3.2: File tree before and after renaming my file.txt

Figure 3.3: File tree before and after moving my file.txt to the Docs directory

Figure 3.4: File tree before and after moving my file.txt to Docs/my renamed file.txt

One useful flag argument when moving, copying or removing files is the -i (interactive)
flag. If this flag is used, you will be asked if you want to remove files before they are
permanently erased or overwritten.

In the following example, we have another file called another_file.txt which we move

© Jakob Willforss 2016 33

CHAPTER 3. WORKING WITH FILES IN UNIX

Note

The UNIX terminal lacks many of the safety mechanisms we are used to when using
GUI-based interfaces for Windows, Mac or Linux. Notably, when running commands
from the terminal, files are not stored in a trash bin when removed. You are generally
not given any warning that you are about to overwrite or remove valuable data.

into the file my_renamed_file.txt already residing in the directory.

$ mv -i another_file.txt Docs/my_renamed_file.txt

mv: overwrite ’Docs/my_renamed_file.txt ’?

You can reply to this by typing ’y’ or ’n’, and then return

$ mv another_file.txt Docs/my_renamed_file.txt

Note: No warning here - The file gets overwritten

When prompted whether you want to overwrite the file, you need to type ’y’ or ’yes’
before pressing return to proceed (if you want to overwrite the file).

3.2.2 cp

copy files and directories
Command usage: cp [-i] <target_file> <end_location>

The cp command works similarly to the mv command, but retains the target_file

copy of the file. If you specify a directory as end_location, a file with the file name of
target_file will be created in the directory. If an entire file path is given as argument, the
copy will get the new file name.

Similarly to mv, the cp command quietly overwrites existing files if not the -i flag is
provided.

This creates a new copy of "my_file.txt" in Docs

$ cp my_file.txt Docs/

See illustration in figure 3.5.

$ cp my_file.txt Docs/another_file.txt

See illustration in figure 3.6.

$ cp my_file.txt -i Docs/another_file.txt

cp: overwrite ’Docs/another_file.txt ’?

© Jakob Willforss 2016 34

CHAPTER 3. WORKING WITH FILES IN UNIX

Figure 3.5: File tree before and after copying my file.txt to the Docs directory

Figure 3.6: File tree before and after copying my file.txt to Docs/another file.txt

3.2.3 rm

remove files or directories
Command usage: rm [-i] <target_file>

rm removes files from the file system. Be very careful when using the rm command, as
UNIX gives no warning before you remove highly important files (for example, your valuable
raw data from your sequencing experiments). To get some more protection, you can use the
-i flag to prompt yes or no for each file. Another way of providing some protection is to
properly set the file permissions for the files. This will be discussed in a later chapter.

3.3 Folder commands

Up until now we have worked with single files. You are familiar with directories (also called
folders) from the operating system you commonly use. Folders shouldn’t be underestimated
(or underutilized). They serve an important purpose being the main tool for organizing your

© Jakob Willforss 2016 35

CHAPTER 3. WORKING WITH FILES IN UNIX

files.

3.3.1 mkdir

make directory
Command usage: mkdir <folder_name>

mkdir simply creates a new empty folder.

$ mkdir my_directory

3.3.2 rmdir

remove directory
Command usage: rmdir <folder_name>

rmdir lets you remove an empty folder. It is one of the few ’safe’ UNIX commands, as
it will refuse to remove any directories containing other files.

$ rmdir my_directory

$ rmdir Docs

rmdir: failed to remove ’Docs ’: Directory not empty

3.3.3 rm -r

remove file or directory recursively
Command usage: rm -r <folder_name>

This is likely the most dangerous command you will learn during this course. If you use
this command unwisely, you are able to remove some or all of your analyses forcing you to
re-load it from the latest backup (if you don’t have a backup of your UNIX files, you are
living dangerously). If you have administration rights on the computer, you can even remove
some or all of the system files, crippling your system, destroying your data, and forcing you
to perform a full re-installation.

The rm -r command is used to remove a directory and all contained directories and files.
It can also be used with the -i flag to ask you for removal of each single file. This might not
always be feasible if you have many files. Take care and think first before running rm -r.

$ rm -r Docs

© Jakob Willforss 2016 36

CHAPTER 3. WORKING WITH FILES IN UNIX

Figure 3.7: File tree before and after recursively removing the Docs directory (removed files
are marked red)

3.4 Looking inside files

Up until now we have discussed how to handle files and directories, looking at them from
the outside. Now, we will learn some commands used to investigate the content of the files.

In this section, we will work with two small files my_file.txt and my_other_file.txt.
The content of the files are shown in figure 3.8 and figure 3.9.

my file.txt

This is the first line of my_file.txt

This is the second line

This is the last line

Figure 3.8: The content of the file ”my file.txt”

my other file.txt

This line comes from my_other_file.txt

This is the last line of my_other_file.txt

Figure 3.9: The content of the file ”my other file.txt”

© Jakob Willforss 2016 37

CHAPTER 3. WORKING WITH FILES IN UNIX

Note

If you accidentally run cat for a very large file (example: 10 gigabytes of sequencing
data) it will flood your terminal with its output. You can abort cat (and any other
commands) by pressing the key combination <Control> + <C>.

3.4.1 cat

concatenate files and print on the standard output
Command usage: cat <target_file(s)>

The cat command allows you to take a look inside files by printing the entire file to the
terminal. It also allows you to concatenate (add together) multiple files.

$ cat my_file.txt

This is the first line of my_file.txt

This is the second line

This is the last line

$ cat my_file.txt my_other_file.txt

This is the first line of my_file.txt

This is the second line

This is the last line

This line comes from my_other_file.txt

This is the last line of my_other_file.txt

3.4.2 head

output the head-part (the first part) of the file
Command usage: head [-number] <target_file>

Often, you are not interested in all the file content, but only want to check the first
part of the file to get an idea of its content. The head command does exactly this, print-
ing the first ten lines of the file to the terminal. The exact number of printed lines can
be adjusted by adding a flag with the number of lines you want to print. For example:
head -20 <target_file> will print the first 20 lines of the file.

$ head -2 my_file.txt

This is the first line of my_file.txt

This is the second line

© Jakob Willforss 2016 38

CHAPTER 3. WORKING WITH FILES IN UNIX

3.4.3 tail

output the tail-part (the last part) of the file
Command usage: tail [-number] <target_file>

The command tail works similarly to head, but prints the end of the file instead of the
top. Per default, it outputs the last ten lines. This can be adjusted in the same way as for
the head command: tail -20 <target_file>. This command is especially useful when
looking into files to which content is continuously added to the end. One example of this is
so called log files, to which information about ongoing programs are added continuously.

$ tail -2 my_file.txt

This is the second line

This is the last line

3.4.4 less

Command usage: less <filename>

The command less can be used to open and explore a file. It can be used to quickly
navigate up and down the file content, and can also be used to search for particular words
in the file. Compared to cat, less lets you explore a file without flooding the terminal. We
have encountered less before when running the man command, which opened information
about the command in less.

less has its own set of internal commands run from within the program. Some of the
most useful are shown in figure 3.10.

q Quit less and return to the terminal

/ By typing / followed by string of text and pressing return, less will search for the
next instance of that word.

space Jump down a half page.

Figure 3.10: less commands

3.5 Editing text

Up until this point we have only looked into the present file content - We haven’t made
any changes to the files. When processing files, you generally want to avoid making manual
changes which might be hard to trace and reproduce. But in some cases, you will of course
need to be able to create or edit files manually.

© Jakob Willforss 2016 39

CHAPTER 3. WORKING WITH FILES IN UNIX

There are a number of different editors available for editing raw text. Examples of
graphical editors are Notepad (Windows), Gedit (Linux) or TextEdit (Mac).

Note

Editors like Microsoft Office’s Word is strongly not recommended to use for raw text
editing as it doesn’t store its files in plain text, but instead wraps it inside its own file
format. This format is not possible to work with using the tools we present here.

If you are working on a remote computer through SSH, it is often useful to be able to
open the file using a purely terminal based editor. We will use the text editor nano here
due to its simplicity, but there are many other alternatives. vim and emacs are two editors
which are popular among developers. They contain many of powerful features, but takes
some effort to learn to use properly.

3.5.1 nano

nano’s another editor, an enhanced free Pico clone
Command usage: nano <file_name>

nano allows editing of a text file directly, similarly to most editors. There is no menu bar
though. Instead, a number of options are listed at the bottom. The nano interface is shown
in figure 3.11. To options are used by pressing the <Control> button (or corresponding key
on a Mac) together with the shown letter.

Figure 3.11: Editing a file in nano

Must-know nano commands are shown in figure 3.12.

Save the file <Control> + O (followed by Enter to confirm the filename)

Exit the file <Control> + X

Figure 3.12: nano commands

© Jakob Willforss 2016 40

CHAPTER 3. WORKING WITH FILES IN UNIX

3.6 Exercises

The purpose with these exercises is to give you experience with the basic operations for
moving, copying and removing files and folders, and with commands used to investigate text
files.

3.6.1 Make and manage your own file

First, let’s create a file from scratch, and try out the different operations on it. The purpose
here is just to run through the commands. You are encouraged to experiment with the
different commands - The goal is for you to feel comfortable using them.

1. Create a new directory for this exercise, and change working directory to it.

$ mkdir exercise3

$ cd exercise3

Check your present working directory to see that it is inside the exercise3 directory
you changed to.

2. Create your own file using nano. In the example below, a file named yourfile.txt is
created. In this file, enter at least five lines of text of any kind. Save the file and exit
nano.

$ nano yourfile.txt

3. Check the file size of your new file using ls -l. Files containing sequencing data can
contain gigabytes of raw text data. This means that they easily can contain many
millions times more data than your file.

4. Print the content of your file to the terminal using cat, head and tail. Adjust the
head and the tail commands to just see the first and last 2-3 lines of your file. In the
example below we look at the two first lines of yourfile.txt

$ head -2 yourfile.txt

5. Investigate your file with less. less is often more convenient than cat as it doesn’t
print all of the (often huge) file content directly to the terminal. (Remember that you
can exit less by pressing q).

$ less yourfile.txt

6. Create a directory using the mkdir command.

© Jakob Willforss 2016 41

CHAPTER 3. WORKING WITH FILES IN UNIX

7. Create a copy of your file using the cp command within the directory. This can be
done in the following way (in this case the directory is named yourdir).

$ cp yourfile.txt yourdir

Can you also create another copy of your file in the directory while simultaneously
assigning it a new name?

8. Rename one of the files within the directory using the mv command. A file can be
renamed within the directory without you changing working directory:

$ mv yourdir/yourfile.txt yourdir/yourrenamedcopy.txt

This would rename the file yourfilecopy.txt within the directory yourdir. Check
the current state of your files using the ls command.

9. Attempt to remove the directory (with at least one copy of your file in it) using the
rmdir command. What happens?

10. Now, remove the directory using the rm -r command. Do it with the -i flag to see
what files you are removing. Answer ’y’ to remove the files.

$ rm -r -i yourdir

There were a lot of commands here. If you are unsure about some of them, run them
again until you feel comfortable creating, moving and removing files.

These commands are (together with the commands introduced in the previous chapter)
the foundation for most UNIX-based work. When you have worked these commands into
your muscle-memory you will be able to put your full attention to your analysis.

3.6.2 FASTA management (*)

This exercise is more challenging. Do it if you have the time.
Let’s use the commands we have learned on some real data. After changing your working

directory to your home directory, download and extract the tarball for this exercise:

$ wget http ://130.235.244.56/ unix/tarballs/unix_course_chapter3.tar.gz

$ tar -xf unix_course_chapter3.tar.gz

Make sure with ls that you now have a directory named "unix_course_chapter3"

containing four files.
If you want to save the output from a command in a file, you can use the > operator.

For example, if you want to save the output from ls to a file named saved_output.txt you
would run:

© Jakob Willforss 2016 42

CHAPTER 3. WORKING WITH FILES IN UNIX

ls > saved_output.txt

After running this command you will have a file named saved_output.txt containing
the output from the ls command. This will be explained in more detail in the chapter about
file streams.

1. * Do some investigation of the two types of FASTA files using the same commands
that you used in the previous exercise. How are they similar/different?

2. * Concatenate the two FASTA-A files into a single FASTA named combined_A.fa and
the two FASTA-B files into a single FASTA named combined_B.fa

3. * Investigate the two newly created files to make sure that everything looks good.

4. * Calculate the number of lines in your combined FASTAs by running the commands:

$ wc -l combined -A.fa

$ wc -l combined -B.fa

The wc command will be introduced in the next chapter. How many lines did you
get? You should get 4000 lines for the combined A-version and 34051 for the combined
B-version. Does this support your previous hypothesis about the files’ similarities /
differences?

5. * Try removing one of the four initial FASTA files (not the ones that you created).
What happens? Can you guess why?

Can you see why less, head and tail sometimes are more useful than cat?

© Jakob Willforss 2016 43

CHAPTER 3. WORKING WITH FILES IN UNIX

3.7 Checkpoint

Before you continue, answer the following questions:

• When are plain text files, binary files and compressed files used?

• Why are compressed files especially important in bioinformatics?

• What makes the UNIX terminal especially dangerous when moving, copying and re-
moving files?

3.7.1 UNIX commands

Consider each command for a second. Make sure that you have an idea about what they do
before moving on.

Introduction to UNIX

man

ssh [-v]

Introduction to the file system

cd

ls [-l] [-lh]

pwd

Working with files in UNIX

cat

cp [-i]

file

head [-number]

less

mkdir

mv [-i]

nano

rm [-i] [-r]

rmdir

tail [-number]

© Jakob Willforss 2016 44

CHAPTER 3. WORKING WITH FILES IN UNIX

3.8 Further reading

3.8.1 Text editors

Text editors is a never ending source of heated debate (in some circles). In this course we are
using nano for editing raw text as it is a relatively simple editor. One of the more powerful
editors is vim. It is also an extremely popular editor, and its predecessor vi is installed on
virtually all UNIX machines.

Vim has two different modes - One for inserting text and another for running commands.
It allows for powerful text editing, but can be somewhat unintuitive to pick up. If you are
interested in learning vim, you could take a look at the following cheat sheet/tutorial:

http://www.viemu.com/a_vi_vim_graphical_cheat_sheet_tutorial.html

A friendly hint - You can (at most times) exit vim by typing ”:wq”.

© Jakob Willforss 2016 45

http://www.viemu.com/a_vi_vim_graphical_cheat_sheet_tutorial.html

Chapter 4

Working with file content

4.1 Important bioinformatic file formats

"A file format is a standard way that information is encoded for

storage in a computer file"

- Wikipedia, 4th of April, 2016

A file format requires the content of a file to follow certain guidelines. The content
varies between files, but the formatting of that content must be similar. This allow us to
do assumptions about the files, which in turn allow us to run certain commands on them to
retrieve desired information.

File formats is an important part of bioinformatics. You need to understand your files
before you can know what to expect when processing them with UNIX commands.

4.1.1 The FASTA file format

A popular way of storing sequence data is the FASTA format. Each sequence is represented
by a header-part and a sequence-part. The header contains information about the sequence
(for example its ID) followed by the sequence itself. The structure of a FASTA file is shown
in figure 4.1.

Sometimes the sequence of the FASTA file is divided into blocks of fixed length for easier
viewing. This is called multi-line fasta (see figure 4.2). When processing the FASTA-file,
it is usually easier to keep the sequence on a single line. This is called single-line fasta (see
figure 4.3).

Sometimes you need to reformat the FASTA file from multi-line format to single-line
format. See section 4.5.1 in the ”further reading” materials if you want to learn how this
can be done.

4.1.2 FASTQ

The FASTQ file format also contains sequence information, but has an additional line for
each sequence containing quality information. The quality index is a measure used by the
sequencer, and indicates how certain it is about each letter of the sequence. With a lower

46

CHAPTER 4. WORKING WITH FILE CONTENT

File format specification

1. The content is divided into entries, each consisting of a header and a sequence

2. The header line stars with a >-sign, followed by information about the entry

3. The header is followed by one or more lines containing sequence data

Example:

>description line 1

AGTGTGATCGTAGCTAGC

>description line 2

ATTTAGATGATGAGAAGATGA

ATTGTGTACA

Figure 4.1: FASTA specification

Multi-line FASTA

>first_entry further_information

AGTAGCTGACTGACTGATCGATCGTAGCTA

GCTAGCTAGCTAGCTAGCTAGCTAGCTAGC

TGTAGCTAGC

>second_entry further_information

TGACGTGGCGCTAGGCATTATATACGGACG

GCGGCTACGATTATGCATCGTAGCAGATAT

TATTAGCTAGCA

Figure 4.2: Example of multi-line FASTA

Single-line FASTA

>first_entry further_information

AGTAGCTGACTGACTGATCGATCGTAGCTAGCTAGCTAGCTAGCTAGCTAGCTAGCTAGCTGTAGCTAGC

>second_entry further_information

TGACGTGGCGCTAGGCATTATATACGGACGGCGGCTACGATTATGCATCGTAGCAGATATTATTAGCTAGCA

Figure 4.3: Example of single-line FASTA

quality index, wrongly assigned letters are more common. The specification of the FASTQ-
format is shown in figure 4.4.

The exact maximum quality value for the nucleotides depends on the sequencing machine,
but is around 40. The numbers are each represented by different characters in order to be
able to capture all 40 values in a single letter. Figure 4.5 shows an example of the quality

© Jakob Willforss 2016 47

CHAPTER 4. WORKING WITH FILE CONTENT

1. Each entry starts with a header line, starting with a @-sign

2. The header is followed by one or more lines containing sequence data

3. Then another header line, usually starting with a +-sign which either has the
same content as line 1, or is left empty

4. Finally, quality indices for each nucleotide in the sequence data

Example:

@description line 1

AGTGTGATCGTAGCTAGC

+

%++)(%%%%).1***-22

@description line 2

+

ATTTAGATGATGAGAAGATGA

%++)(%%%%).1***-886((

Figure 4.4: FASTQ specification

encoding.

character quality character quality

! 1 + 11

" 2 , 12

3 - 13

$ 4 . 14

% 5 / 15

& 6 0 16

’ 7 1 17

(8 2 18

) 9 3 19

* 10 4 20

...

Figure 4.5: Example of quality indices for the first twenty values in the FASTQ format

An example of a FASTQ-file is shown in figure 4.6. There are two entries, each represented
by four lines. The first header lines start with a @ sign, and the second header lines are left
empty here (starting with a + sign). Each base pair is matched by a quality index sign,
similar to the ones seen in figure 4.5.

© Jakob Willforss 2016 48

CHAPTER 4. WORKING WITH FILE CONTENT

Example FASTQ file

@first_entry

AGTAGCTGACTGACTGATCGATCGTAGCTAGCTAGCTAGCTAGCTAGCTAGCTAGCTAGCTGTAGCTAGC

+

!’’*((((***+))%%%++)(%%%%).1***-+*’’))**55CCF>>>>>>CCCCCCC65%%).1*%%))

@second_entry

TGACGTGGCGCTAGGCATTATATACGGACGGCGGCTACGATTATGCATCGTAGCAGATATTATTAG

+

%%%++)(%%%%)55CCF>>>>>%++)(%%%%).1%%++)(%%55CCF>>>>>*-+*’’))**5CCC

Figure 4.6: Example FASTQ file

4.1.3 GFF

The GFF format stands for General Feature Format, and is a common way of describing
genes and other features in DNA, RNA and protein sequences. Currently, there are two
versions of the GFF format in use - GFF2 by Sanger Institute and GFF3 by the Sequence
Ontology Project. In this course we will only be using the GFF3-format.

The GFF file consists of rows containing information about different features. The ex-
ception is comment lines which similarly to the UNIX terminal language (Bash) starts with
#. A dot ’.’ in a column means that there is no information present for that particular field
of the entry. The nine columns of a GFF file are described in figure 4.7.

An example of a GFF-file is shown in figure 4.8. Note the two first comment lines. If
those are present, they need to be taken into account when processing the file.

4.2 File content commands

You have already seen some commands for investigating file content:

• cat

• head

• tail

• less

• nano

Now, we are ready to expand our toolbox with a number of useful commands. We will
start out by introducing the commands and their usages one by one. Soon, we will start
learning how to combine those commands using pipes, linking together chains of processing
steps. But that is for the next chapter.

© Jakob Willforss 2016 49

CHAPTER 4. WORKING WITH FILE CONTENT

1. sequence ID for sequence where feature is located.

2. source Keyword with information about what program or database that were
used to identify the feature. Will not be discussed in this course.

3. feature The type of feature. Can for example be ’gene’, ’exon’, ’cds’ (coding
sequence).

4. start Start position of the feature.

5. end End position of the feature.

6. score Can be used to put a value for the confidence of the feature. Will not be
discussed in this course.

7. strand If the feature is located in the plus- or minus-strand of genome.

8. frame For coding sequences, if there is a phase shift. Can have values 0, 1 and
2. Will not be discussed in this course.

9. attributes Other information related to the feature. Often contains information
about its ID, and to which other features it is related (for example: To which
gene exons belong).

Figure 4.7: GFF3 file format specification

Example GFF file

##gff-version 3.2.1

##sequence-region

ctg123 . gene 1000 9000 . + . ID=gene00001;Name=EDEN

ctg123 . mRNA 1050 9000 . + . ID=mRNA00001;Parent=gene00001

ctg123 . exon 1300 1500 . + . Parent=mRNA00003

ctg123 . exon 5000 5500 . + . Parent=mRNA00001,mRNA00002,mRNA00003

ctg123 . exon 7000 9000 . + . Parent=mRNA00001,mRNA00002,mRNA00003

ctg123 . CDS 1201 1500 . + 0 ID=cds00001;Parent=mRNA00001

ctg123 . CDS 3000 3902 . + 0 ID=cds00002;Parent=mRNA00001

ctg123 . CDS 5000 5500 . + 0 ID=cds00003;Parent=mRNA00001

ctg123 . CDS 7000 7600 . + 0 ID=cds00004;Parent=mRNA00001

ctg123 . CDS 1201 1500 . + 0 ID=cds00002;Parent=mRNA00002

Figure 4.8: Example of an GFF file in GFF3-file format

© Jakob Willforss 2016 50

CHAPTER 4. WORKING WITH FILE CONTENT

Note

It happens that files with biological information diverge from the file formats which
they are said to have. In best case those errors cause the programs or the commands
processing them to crash. In worst case, the errors silently slip through the processing,
effecting the final numbers in a subtle and invisible way. Be careful and double check
that your files actually follow the claimed format.

4.2.1 wc

Command usage: wc [-l] [-w] [-m] <filename>

The purpose of the wc command is to investigate the number of lines, words and characters
in a file. By default, it will give you three numbers representing those three features. By
providing flag arguments, you can limit the output to the feature of the file that you are
interested in.

$ wc my_report.txt

96 1125 11910 my_report.txt

The file contains 96 lines , 1125 words , 11910 characters

$ wc -l my_report.txt

96 my_report.txt

There are 96 lines in my_report.txt

$ wc -w my_report.txt

1125 my_report.txt

There are 1125 words in my_report.txt

$ wc -m my_report.txt

11910 my_report.txt

There are 11910 characters in my_report.txt

4.2.2 diff

Command usage: diff <first_file> <second_file>

The diff command compares two files and evaluates if there are any differences between
the files. If it finds differences, it prints information about where the differences were found
together with the diverging lines. If we want to examine a FASTA file and check whether it
is identical to another copy, diff is the command to use.

Here, we compare the two FASTA files showed in figure 4.9 and figure 4.10.

© Jakob Willforss 2016 51

CHAPTER 4. WORKING WITH FILE CONTENT

raw fasta.fs

>first_entry

AGTAGCTGACTGACTGATCGATCGTAGCTA

GCTAGCTAGCTAGCTAGCTAGCTAGCTAGC

TGTAGCTAGC

>second_entry

TGACGTGGCGCTAGGCATTATATACGGACG

GCGGCTACGATTATGCATCGTAGCAGATAT

TATTAGCTAGCATAGCTAG

Figure 4.9: Raw fasta file raw fasta.fs

edited fasta.fs

>first_entry

AGTAGCTGACTGACTGATCGATCGTAGCTA

GCTAGCTAGCTAGCTAGCTAGCTAGCTAGC

TGTAGCTAGC

>second_entry additional_information

TGACGTGGCGCTAGGCATTATATACGGACG

GCGGCTACGATTATGCATCGTAGCAGATAT

TATTAGCTAGCATAGCTAG

Figure 4.10: Edited fasta file edited fasta.fs

$ diff raw_fasta.txt edited_fasta.fs

5c5

< >second_entry

> >second_entry additional_information

In this case, the diff command shows that one of the headers had additional information
in one of the FASTA files.

4.2.3 grep

Command usage: grep [-c] [-A] [-v] [-f] [-i] <pattern> <file_name>

grep is a highly useful and versatile command. Its purpose is to extract certain lines
from a file based on whether they match a particular pattern or not.

If we want to extract the FASTA headers from the file raw_fasta.fs (shown in figure
4.9), we could run the following:

© Jakob Willforss 2016 52

CHAPTER 4. WORKING WITH FILE CONTENT

-c Instead of returning the matches themselves, return the number of matches.

-A <number> Extract given number of lines trailing the matches.

-v Invert the match so that non-matching lines are return.

-f <filename> Obtain patterns from provided file, one per line.

-i Ignore upper/lower case when matching.

Figure 4.11: Useful grep flags

$ grep "^>" raw_fasta.fs

>first_entry

>second_entry

This command will extract all lines starting with the > sign. The ^ means that grep only
looks for lines starting with the > sign. We will come back to this and other patterns in a
later chapter. The quotation marks must be included for the grep command to interpret ^>
as a string.

There is a variety of useful flags for the grep command, which we will use in the coming
exercises (see figure 4.11 for some useful examples). Remember, you can always check the
man pages for more information - man grep.

Note

Make sure to keep track of which of the flags that require input arguments and which
don’t. For instance, when running grep with the -c flag or the -v flag no further extra
input is required - the rest of the command is used as usual. When running with the
-A flag, you need to provide a number to indicate how many trailing lines you want
to retain. When running with the -f flag, you need to provide a file - but no regular
pattern.

4.2.4 cut

cut out sections from each line in a file
Command usage: cut [-d] -f/-c <fields> <file_name>

The purpose of the command cut is to extract particular columns from lines. The most
straight-forward case is to extract columns of data from tab-delimited files (like GFF files),
but it can also be used to parse headers or extract particular stretches of nucleotides from
sequences.

© Jakob Willforss 2016 53

CHAPTER 4. WORKING WITH FILE CONTENT

It is required to use one of the field flags -f or -c. Further information about the cut

flags is seen in figure 4.12.

-d Delimitor - Specify character to use as separator between different fields

-f Fields - Per default text segments separated by white space (spaces, tabs)

-c Characters - Can cut out segments of text in particular ranges of characters

Figure 4.12: Central flags for the cut command

The field can be specified in three different ways - similarly to when selecting custom
printer pages for most printers, if you are familiar with those. Those methods are shown in
figure 4.13.

Ways of specifying fields to the cut command.

• A single number: -f 3 (will cut field 3)

• A range of numbers: -c 3-6 (will cut characters 3, 4, 5 and 6)

• Several picked numbers: -f 3,4,7 (will cut fields 3, 4 and 7)

Figure 4.13: Central flags for the cut command

Usage example

example annotation.gff

ctg123 . gene 1000 9000 . + . ID=gene00001;Name=EDEN

ctg123 . mRNA 1050 9000 . + . ID=mRNA00001;Parent=gene00001

ctg123 . exon 1300 1500 . + . Parent=mRNA00003

ctg123 . exon 5000 5500 . + . Parent=mRNA00001,mRNA00002,mRNA00003

ctg123 . exon 7000 9000 . + . Parent=mRNA00001,mRNA00002,mRNA00003

ctg123 . CDS 1201 1500 . + 0 ID=cds00001;Parent=mRNA00001

ctg123 . CDS 3000 3902 . + 0 ID=cds00001;Parent=mRNA00001

ctg123 . CDS 5000 5500 . + 0 ID=cds00001;Parent=mRNA00001

ctg123 . CDS 7000 7600 . + 0 ID=cds00001;Parent=mRNA00001

ctg123 . CDS 1201 1500 . + 0 ID=cds00002;Parent=mRNA00002

Figure 4.14: Example GFF file

© Jakob Willforss 2016 54

CHAPTER 4. WORKING WITH FILE CONTENT

If we want to extract only the column containing the feature information from the file
example_annotation.gff, we could run the following:

$ cut -f 3 example_annotations.gff

gene

mRNA

exon

exon

exon

CDS

CDS

CDS

CDS

CDS

The default delimiter is tabs. If the data is separated - delimited - by another character,
for examples commas (,), this can be specified using the -d flag. We could also retrieve parts
of the lines characters directly using the -c flag. This is useful for extracting stretches from
nucleotide- or amino acid-sequence.

$ cut -c 5-15 example_annotations.gff

23 . gene 1

23 . mRNA 1

23 . exon 1

23 . exon 5

23 . exon 7

23 . CDS 12

23 . CDS 30

23 . CDS 50

23 . CDS 70

23 . CDS 12

4.2.5 sort

Command usage: sort [-n] [-r] <file_name>

sort orders lines alphanumerically. It can also sort numerically if the -n flag is used.
The sorting order can be reversed using the -r flag.

Usage example

If we for example have stored a feature column from a GFF-file in a file called
example_feature_column.txt (seen in figure 4.15), we can run the following in order to
sort it:

© Jakob Willforss 2016 55

CHAPTER 4. WORKING WITH FILE CONTENT

example feature column.txt

gene

mRNA

exon

CDS

exon

gene

CDS

exon

exon

CDS

CDS

CDS

Figure 4.15: GFF feature column

$ sort example_feature_column.txt

CDS

CDS

CDS

CDS

CDS

exon

exon

exon

exon

gene

gene

mRNA

-r Get the sorted results in reverse order

-n Sort on natural number instead of strings. This means that 9 would be sorted
before 11. For regular sorting, the 11 would come first based on that its first
letter is ’1’.

Figure 4.16: Useful flags for the sort command

© Jakob Willforss 2016 56

CHAPTER 4. WORKING WITH FILE CONTENT

4.2.6 uniq

Command usage: uniq [-c] <file_name>

Finally, we have the command uniq which can be used to remove duplicate adjacent
lines. This means that you have to sort the file before running the uniq command if you
want to remove all duplicates, as it is unable to remove duplicates that are not adjacent.

-c Get the number of lines represented by each unique entry together with the entry

Figure 4.17: Useful flag for the uniq command

example sorted feature column.txt

CDS

CDS

CDS

CDS

CDS

exon

exon

exon

exon

gene

gene

mRNA

Figure 4.18: Sorted GFF feature column

First, we try uniq on the sorted GFF column we received in previous exercise, stored in
the file example_sorted_feature_column.txt. We include the -c flag to see the number
of times the unique entries were encountered.

$ uniq -c example_sorted_feature_column.txt

5 CDS

4 exon

2 gene

1 mRNA

Now, we try out what happens if we run uniq for a non-sorted file. We use the file
example_feature_column.txt seen in figure 4.15.

© Jakob Willforss 2016 57

CHAPTER 4. WORKING WITH FILE CONTENT

$ uniq -c example_feature_column.txt

1 gene

1 mRNA

1 exon

1 CDS

1 exon

1 gene

1 CDS

2 exon

3 CDS

Can you see why this happened?

© Jakob Willforss 2016 58

CHAPTER 4. WORKING WITH FILE CONTENT

4.3 Exercises

4.3.1 Introduction to the exercise

Exercise files

Create a new directory in your home directory for this exercise. Keep the files for this
exercise within this directory.

For this exercise (and later exercises) we will be using files from the potato reference
genome (http://solanaceae.plantbiology.msu.edu/pgsc_download.shtml). We will also
be using a FASTQ file taken from a real RNA-seq dataset. Those two datasets can be down-
loaded from the server:

$ wget http ://130.235.244.56/ unix/tarballs/genome_files.tar.gz

$ wget http ://130.235.244.56/ unix/tarballs/MhaptRNASeq.fastq.gz

Note that we use the gunzip command (gunzip <gz-file>) to extract the second file
as it isn’t a tar-archive. It is a single gzipped FASTQ-file.

The genome files uses IDs for genes, coding sequences, peptides and transcripts. The
table file amount the genome files can be used to map between different types of IDs, as well
as their annotation. The IDs looks like the following (the letter after ”DM” shows if the
ID belongs to a coding sequence, a gene, a peptide or a transcript - in this case a coding
sequence):

PGSC0003DMC400017652

When working with biological data it is often useful to first try the commands for smaller
subsets before moving on to the whole files. This makes it easier to see what the commands
are doing. Subsets of the large FASTA-, FASTQ- and GFF-files are provided in the tarball
for this exercise.

$ wget http ://130.235.244.56/ unix/tarballs/unix_course_chapter4.tar.gz

Extract it and make sure that you have three files in the extracted folder with the file
endings .gff, .fasta and .fastq Take a look inside the files using commands such as head
or less.

Saving output from a command

You can save the output from a command to a file using the > operator:

head myfile.txt > my_saved_output.txt

This will be explained in depth in a coming chapter. Be careful when running this com-
mand so that you not print the output into an existing file. The following command would
remove the file my_valuable_data.fa and replace it with the output from the head com-
mand:

© Jakob Willforss 2016 59

http://solanaceae.plantbiology.msu.edu/pgsc_download.shtml

CHAPTER 4. WORKING WITH FILE CONTENT

head myfile.txt > my_valuable_data.fa

4.3.2 Exploring the FASTA file

We will start with a subset of the FASTA-file before moving on to the full file.

1. Take a look at the content of cds_subset.fasta. Use grep with the -c flag to calculate
the number of entries.

$ grep -c "^>" cds_subset.fasta

The -c flag tells grep to count the number of matched entries instead of printing them.
The "^>" pattern matches a > sign at the start of the line - The header lines. If we
want to look directly at the headers, we can run the command without the -c flag.

$ grep "^>" cds_subset.fasta

2. Use the wc command to count the number of lines and number of letters in the file.
There should be 3891 letters in this file (including line breaks).

3. Make a copy of one of your FASTA file, and use nano to do some edits in the headers
of the copy. Then compare it to the original FASTA file. using the diff command.
Do you understand the output?

$ cp cds_subset.fasta cds_subset_copy.fasta

$ nano cds_subset_copy.fasta # Add information to a header

$ diff cds_subset.fasta cds_subset_copy.fasta

The diff command can be very useful to see whether a file has been changed compared
to the raw data.

4. Let’s say we want to extract only the sequence with the coding sequence with ID
PGSC0003DMC400024095. Use the grep command with the -A flag to get the headers
together with trailing sequence line. (If you are unable to copy the ID from this
document, you could use a smaller part of the ID here).

4.3.3 Exploring the FASTQ file

Here, we start out with the subset of the FASTQ file: RNAseq_subset.fastq

1. Take a look into the file. How many sequences are represented in the file? Remember
that each sequence is represented by multiple lines. See if you can understand the
different lines. Go back to the introduction of the FASTQ format in this material if
you don’t remember how the format is structured.

© Jakob Willforss 2016 60

CHAPTER 4. WORKING WITH FILE CONTENT

2. Now, let’s count the number of lines using a UNIX command. The naive way would
be to approach it similarly to how we approach counting entries in the FASTA file -
Counting the number of lines starting with the @-sign.

$ grep -c "^@" RNAseq_subset.fastq

This is not the way to do it! What number did you get from this? How many sequences
are really represented in the file? Take a look inside the file and see if you can figure
out why this command gives the wrong number.

3. A better way is to count the total number of lines in the file, and divide the number
by four. Count the total number of lines. If you divide this number by four, do you
get the correct count?

4. * Download the full FASTQ-dataset and decompress it using the gunzip command
(take a look into the man pages - or the next chapter - if you are unsure how to run
it). How many lines are there in total in this dataset? This dataset is actually only
a small part of the original dataset. This kind of sequencing data can result in huge
files.

4.3.4 Exploring the GFF file (*)

Our goal is to find out how many genes, exons and other features we have in the full GFF-file.
We will first use the subset of the GFF file named annotation_subset.gff found in the
tar-archive for this exercise, before moving on to the full file. Make sure that you understand
what is happening for each of the steps.

1. First, lets explore the gff-file. Investigate the content visually using the commands you
learned in the previous chapter. How many genes does this subset contain? Do you
see how the different features are linked together through the IDs in the attributes
column?

2. We have some comment lines at the start of the file. Those can often contain useful
information, but must be removed before we do further analysis. Use grep with an
appropriate flag to remove those lines, and redirect this output to another file using
the > operator.

To print only the lines starting with the comment sign #, we could do the following:

$ grep "^#" annotation_subset.gff

The "^#" is the pattern we are matching for. The hat (^) tells us to only look for the #

sign at the start of the lines. annotation_subset.gff is the file which we are running
grep on. Take a look at the description of grep in this chapter if this is unclear.

© Jakob Willforss 2016 61

CHAPTER 4. WORKING WITH FILE CONTENT

Now we got the comment lines. We want to flip the pattern so that we get all lines
except the comment lines. We can do this using the -v flag. Let’s retrieve all non-
comment lines, and put them into another file named subset_nocomments.gff

$ grep -v "^#" annotation_subset.gff \

> subset_nocomments.gff

The \ means that the line is too long to fit on one line, and continues on the second
line. It is possible to divide lines like this in UNIX. Do not type out this character
if you aren’t going to divide your command into multiple lines.

As mentioned, be careful so that you not point the > arrow into an existing file con-
taining valuable data.

3. Double check that you now have your GFF-file without the comment lines by investi-
gating the subset_nocomments.gff file.

4. Use the command cut to extract the column with the features (gene, mRNA, exon,
CDS) and make another file with this output. Print the output to the terminal first
to make sure that it looks like expected before redirecting it to another file.

$ cut -f 3 subset_nocomments.gff # Check that output looks OK

$ cut -f 3 subset_nocomments.gff > annotation_column.txt

Make sure that you have the right content in the annotation_column.txt file.

5. We now want to use the uniq command to get the number of each type of entry, but
first we need to sort the file. (You could try and see what you get if you run uniq -c

on the annotation_column.txt). Create the sorted file using sort.

$ sort annotation_column.txt > sorted_features.txt

6. Almost there! Let’s count the number of the different features we have in sorted_features.txt

using uniq.

$ uniq -c sorted_features.txt

Does the number correspond to the numbers in the subset of the file? (You can count
them manually).

7. * Now you are ready to count the number of the different features in the full GFF file
(found in the genome files directory). How many of each feature do you get? If you
have done it correctly, you should get counts for four features, and you should find
141037 exons.

This process will be greatly simplified when pipes are introduced in a coming chapter, as
it will remove the need for creating the intermediary files.

© Jakob Willforss 2016 62

CHAPTER 4. WORKING WITH FILE CONTENT

4.3.5 Working with the annotation - Case study (**)

Introduction

This exercise is designed to provide some extra challenge for those who might have some
background with UNIX, or those who particularly likes a challenge. This type of task is
often encountered when working with bioinformatic data. If you are short on time - Save
this exercise for the future.

We have a GFF file with the genes (representative_genes.gff), together with the
sequences in FASTA format (representative_cds.fasta).

We also have a table-file (mapping_table.tsv) linking the different types of IDs to each
other and their annotations. The four different columns contains IDs for genes, transcripts,
coding sequences and peptides.

Hint: You can convert a multi-line FASTA to single-line format in many ways. One of
the simpler ways is to use the program seqtk and run the following command:

$ seqtk seq -l 0 multilinefile.fa > singlelinefile.fa

The task

You have been in contact with a biologist who is particularly interested in investigating
genes containing the zinc finger motif. You task is to retrieve all gene sequences which have
been given annotations related to ”zinc finger”. All genes with annotations that include
”zinc finger” in their text should be extracted, and their sequences should be gathered into
a separate file.

To extract this information you will need to use some or all of the three genome files.
Make sure to think through the problem before trying to solve it. Make an outline. What
information do we need? What information do we have? Are there particular challenges
with the file formats we need to take into account - for example, which versions of the IDs
do we have in which file?

Outline of possible approach

Feel free to approach this exercise in any way you want, using what you have learned this
far in this course. An outline of a potential approach is described below.

1. * Start by extracting the coding sequence IDs that have an annotation related to ”Zinc
finger” from the mapping file. Ignore upper/lower case. The goal here is to get a file
only containing coding sequence IDs which are related to the zinc finger. You will
likely need to make an intermediate file to extract this information. At this point you
should have 620 IDs (if you have 529 - did you ignore upper/lower case?).

2. * Extract the corresponding sequences from the FASTA containing all coding se-
quences. grep is likely useful here, together with a flag argument mentioned in this
chapter.

© Jakob Willforss 2016 63

CHAPTER 4. WORKING WITH FILE CONTENT

3. * Count the number of entries and lines. Do you have 395 FASTA entries? Check with
the wc command that there is 423803 characters in the final file. (If you got 424961,
make sure to double check your output. Does the FASTA file look as you expected?)

If you made it through this exercise - Well done! If you didn’t - no problem. You can
revisit it at a later time.

© Jakob Willforss 2016 64

CHAPTER 4. WORKING WITH FILE CONTENT

4.4 Checkpoint

Before you continue, make sure that you can answer the following:

• What is the difference between single-line and multi-line FASTA files, and why do you
need to keep track of it when processing them in UNIX?

• What is the purpose of the FASTQ format, when we already have the FASTA format?

• What can the GFF-format be used for?

4.4.1 UNIX commands

Consider each command for a second. Make sure that you have an idea about what they do
before moving on.

Introduction to UNIX

man

ssh [-v]

Introduction to the file system

cd

ls [-l] [-lh]

pwd

Working with files in UNIX

cat

cp [-i]

file

head [-number]

less

mkdir

mv [-i]

nano

rm [-i] [-r]

rmdir

tail [-number]

Working with bioinformatic data

cut [-d] -f/-c

diff

grep [-c] [-A] [-v] [-f] [-i]

sort [-n] [-r]

uniq [-c]

wc [-l] [-w] [-m]

© Jakob Willforss 2016 65

CHAPTER 4. WORKING WITH FILE CONTENT

4.5 Further reading

4.5.1 Converting multi-line fasta to single-line fasta

Make sure to keep track of what format you are using. There are many ways of converting
multi-line FASTA files to single-line format. One straight-forward way of doing it is by using
the seqtk-software suite in the following way:

$ seqtk seq -l 0 my_multi_line_fasta.fs > \

my_single_line_fasta.fs

The ”-l 0” tells seqtk to put all based on a single line. It can be set to a positive number
if you instead want the file in multi-line format. Note that you in order to run this command
needs to have seqtk installed on your computer.

Other ways of solving this problem are discussed in the following BioStars thread:

https://www.biostars.org/p/9262/.

4.5.2 Useful tool: seqtk

seqtk is a versatile tool able to work with both compressed and uncompressed FASTA and
FASTQ in many useful ways. It is not a built in UNIX command, but a separate command-
line tool (similar to many other more powerful bioinformatic software). This means that it
isn’t preinstalled on all UNIX-computers, but needs to be installed separately (like many
other software). If you are further interested in how seqtk could be useful and how to install
it, take a look here:

https://github.com/lh3/seqtk

There are a lot of useful bioinformatic tools for a wide variety of purposes. Sometimes,
you need to make tools yourself, but if you look around you will often find that others already
have solved your problem.

© Jakob Willforss 2016 66

https://www.biostars.org/p/9262/
https://github.com/lh3/seqtk

Chapter 5

File permissions, organizing files and
UNIX hygiene

5.1 File permissions

File permissions are used in UNIX to control which users that are allowed to use files and
directories in different ways. They can also be used to protect files from accidental editing
or removal. The effects of file permissions for files and directories are listed in figure 5.1.

For files, the file permissions control who is allowed to:

• Read the file content

• Edit/re-write the file content

• If the file is a program or script - Who can run/execute the program.

For directories, the file permissions control who is allowed to:

• Read the content of the directory.

• Create/write new files in the directory.

• Change the working directory to that directory.

Figure 5.1: Purpose of file permissions

In chapter 2, we ran the following command:

$ ls -l Documents

-rw -r----- 1 user user 687438 sep 16 19:02 MyArticle.pdf

-rw -r----- 1 user user 2481860 may 13 14:05 MyReport.pdf

An overview of the meaning of all the different fields is shown in figure 5.2.

67

CHAPTER 5. FILE PERMISSIONS, ORGANIZING FILES AND UNIX HYGIENE

Figure 5.2: Explanation of the different parts of the ls -l output. Parts related to permissions
are marked in green.

The first column here (the -rw-r-----) is the file permissions of that particular file. The
third and fourth column (user and user) tells us to which user and to which user group a
file belong. Each user can be part of several different user groups.

Here you see another example of running ls -l for a directory containing two files - A
directory and a binary file:

$ ls -l

drwxr -xr-x 2 jakob jakob 4096 jan 25 08:58 a_directory

-rwxr -xr-x 1 jakob jakob 10803 mar 24 08:27 a_binary

For the directory, we have an initial ’d’ before the rest of the permissions, telling us that
it is a directory. Its permissions tell us that everyone can read and access the directory, but
only the user jakob is able to create new files in it.

The permissions for the binary tells us that everyone can read and run the program, but
only the user jakob can edit it.

5.1.1 chmod

change file mode
Command usage: chmod <new_permission> <target_file>

The chmod command is used to change the existing permissions of a file. If you are not
an administrator, you are only able to change permissions for files for which you are the
owner.

Examples of changing the permissions of a file are shown below:

© Jakob Willforss 2016 68

CHAPTER 5. FILE PERMISSIONS, ORGANIZING FILES AND UNIX HYGIENE

$ ls -l

-rw -rw-r-- 1 jakob jakob 182 apr 7 14:45 raw_data.fa

$ chmod +x raw_data.fa

$ ls -l

-rwxrwxr -x 1 jakob jakob 182 apr 7 14:45 raw_data.fa

$ chmod -w raw_data.fa

$ ls -l

-r-xr-xr-x 1 jakob jakob 182 apr 7 14:45 raw_data.fa

If we want to add execution permission to a file, we can do that with the chmod +x

command. If we on the other hand want to remove a type of permission (in this case write
permission) we can do that with the chmod -w command. So, we can add/remove the target
permission using a plus/minus sign followed by the letter representing the permission.

It is also possible to set the exact setup of permissions for a file in a single command.
That is left for the further reading part.

5.1.2 Using file permissions

File permissions are important for security reason, as they control who can access your files.
But, they can also play another important role in your projects by protecting your data from
accidentally being edited or overwritten. We have previously mentioned the use of the -i

flag for the commands rm, mv and cp. Another way of providing ’soft’ protection of your files
is to remove the write permission of files that you don’t want changed. This is recommended
for files like raw data and analysis output files which you don’t plan to edit.

You can remove the write permissions from a file by running the command chmod -w <target>.

$ ls -l

-rw -rw-r-- 1 jakob jakob 9 apr 7 14:06 raw_data.fa

$ chmod -w raw_data.fa

$ ls -l

-r--r--r-- 1 jakob jakob 9 apr 7 14:26 raw_data.fa

$ rm raw_data.fa

rm: remove write -protected regular file ’raw_data ’?

Type n and enter to not remove it

$ mv other_file.fa raw_data.fa

mv: try to overwrite ’other_file.fa’,

overriding mode 0444 (r--r--r--)?

As long as you are the owner of the file, you are still able to remove it, but it will ask
you first. If a program attempts to overwrite the file, it will usually shut down with an error
message.

© Jakob Willforss 2016 69

CHAPTER 5. FILE PERMISSIONS, ORGANIZING FILES AND UNIX HYGIENE

See in figure 5.3 and figure 5.4 how nano reacts if you attempt to edit raw_file.fa after
removing the write permission.

Figure 5.3: Opening a file without write permission in nano

Figure 5.4: Attempting to save changes to a file without file permission in nano

5.2 gzip and tar archives

In other operating systems, the zip-format is often used both for compression of files, and
for packaging a directory of files together in a single file.

On many UNIX-systems, two other file formats are frequently used to compress and
package the files.

• The standard way of compressing files is by using the Gzip format. This is commonly
seen as files with a .gz-extension.

• The standard way of packaging files together is by using the tar-format. This is com-
monly seen as files with a .tar-extension.

When files are packaged in the tar-format, they are usually also gzipped, which is seen
as files with a .tar.gz-extension. Those packages are often called tar archives or tar balls.

© Jakob Willforss 2016 70

CHAPTER 5. FILE PERMISSIONS, ORGANIZING FILES AND UNIX HYGIENE

5.2.1 gzip

gzip - compress files
Command usage: gzip <file>

The gzip command is used to reduce the size of the file by compressing its data. After
compression, the .gz suffix will per default be added to the existing file name.

$ ls -lh

-rw -r--r-- 1 jakob jakob 49M maj 6 2011 nucleotides.fs

$ gzip nucleotides.fa

$ ls -lh

-rw -r--r-- 1 jakob jakob 13M maj 6 2011 nucleotides.fs.gz

Notice that the compression reduced the file size to almost a quarter of its original size.

5.2.2 gunzip

gunzip - uncompress Gzipped files
Command usage: gunzip <gzipped_file>

The gunzip command acts in the reverse compared to gzip. It restores the gzipped file
to its original format (and size).

$ ls -lh

-rw -r--r-- 1 jakob jakob 13M maj 6 2011 nucleotides.fs.gz

$ gunzip sequence_data.fa.gz

$ ls -lh

-rw -r--r-- 1 jakob jakob 49M maj 6 2011 nucleotides.fs

If you want to investigate the content of a gzipped file without unzipping it, you can
either use less which is able to read the files directly, or zcat which prints the content
similarly to the cat command.

5.2.3 tar archives

The tar command has historically been used to store files on a disk- or tape archive. An
example of an collection of tape archives can be seen in figure 5.5.

The flags used for the tar command to create and extract tar archives are shown in figure
5.6.

The tar format is commonly used for storing bioinformatic data. If you work with bioin-
formatics, chances are high that you will encounter tar archives and gzipped files.

Create gzipped tar archive

Create archive of files (previously tape archive, now file archive)
Command usage: tar -czf <tar_archive> <my_directory>

© Jakob Willforss 2016 71

CHAPTER 5. FILE PERMISSIONS, ORGANIZING FILES AND UNIX HYGIENE

Figure 5.5: Old tape archive. Source: U.S. Department of Agriculture

-x Extract the archive

-c Compress the archive

-z Compress/decompress gzipped archive

-f Create the following tar archive

Figure 5.6: Tar archive flags

The tar command is used together with the -c flag, the -z flag and the -f flag to create
a new tar archive.

$ ls -l

drwxrwxr -x 2 jakob jakob 4096 jan 7 11:10 directory

$ ls directory

-rw -rw-r-- 1 jakob jakob 0 apr 7 12:01 nucleotides1.fa

-rw -rw-r-- 1 jakob jakob 0 apr 7 12:01 nucleotides2.fa

$ tar -czf directory

$ ls -l

drwxrwxr -x 2 jakob jakob 4096 apr 7 11:10 directory

-rw -rw-r-- 1 jakob jakob 173 apr 7 12:58 directory.tar.gz

Note that when using the tar command you retain the initial directory you are archiving

© Jakob Willforss 2016 72

CHAPTER 5. FILE PERMISSIONS, ORGANIZING FILES AND UNIX HYGIENE

or the initial tar archive you are extracting. When using the gzip/gunzip commands your
original file is not retained if not specifying elsewise.

Extract tar archive

Extract archive of files (previously tape archive, now file archive)
Command usage: tar -xf <tar_archive>

The tar command is used together with the -x flag and the -f flag to extract an existing
tar archive. The extracted archive is found as a directory without the .tar.gz suffix.

$ ls -l

-rw -rw-r-- 1 jakob jakob 173 apr 7 12:58 directory.tar.gz

$ tar -xf directory.tar.gz

$ ls -l

drwxrwxr -x 2 jakob jakob 4096 apr 7 11:10 directory

-rw -rw-r-- 1 jakob jakob 173 apr 7 12:58 directory.tar.gz

$ ls directory

nucleotides1.fa nucleotides2.fa

5.3 Downloading files

Two commonly used commands for downloading files from the internet using the terminal
are wget and curl. The wget command is the default command in Linux distributions.
On Mac on the other hand, curl is the default command. Here, we will present the wget

command, but if you don’t have it available - explore the curl command.

5.3.1 wget

The non-interactive network downloader/getter
Command usage: wget <internet_address>

wget can be used both to download data from the internet, or to download the HTML-
text for the web pages themselves.

When running the command, you get information about whether the connection to the
target computer hosting the data succeeded, followed by a progress bar with information
about the ongoing download.

© Jakob Willforss 2016 73

CHAPTER 5. FILE PERMISSIONS, ORGANIZING FILES AND UNIX HYGIENE

This link does not actually exist

$ wget http :// dummy.edu/data/genes.gff.gz

--2016-04-07 13:18:28 - - http :// dummy.edu/data/genes.gff.gz

Resolving dummy.edu (dummy.edu)... 35.8.196.182

Connecting to dummy.edu (dummy.edu)

|35.8.196.182|:80... connected.

HTTP request sent , awaiting response ... 200 OK

Length: 4888883 (4,7M) [application/gz]

Saving to: ’genes.gff.gz’

100%[====================================== >] 4 888 883

2,80MB/s in 1,7s

2016 -04 -07 13:18:30 (2,80 MB/s) - ’genes.gff.gz ’

saved [4888883/4888883]

$ ls

genes.gff.gz # Now on your computer!

5.4 Symbolic file links

When working with bioinformatic data, it is not uncommon for some files of interest to be
re-used in many different parts of the project, or even in different projects. To avoid making
copies of the data to all those different locations, or writing extensive file paths to reach the
data, you can use a file link as a ’shortcut’ to the data from a more convenient location.

5.4.1 ln -s

make links between files
Command usage: ln -s <path_to_target> [<link_location>]

The ln -s command is used to create so called ’soft links’ to files. Those can be thought
of as shortcuts to a file using a relative path or absolute path. If the command is used
without the -s flag, you get a hard link to the physical memory location of the computer
that the target file is using. In this course we will only be using the soft links.

Hardlinks refer to the physical location of the computer. If the file is moved, the link
will follow. Softlinks points to a certain location in your file structure and is managed
by the operating system.

To demonstrate, we will use the file structure shown in figure 5.7. Here, the user ’jakob’
has two projects, where he wants to reuse the file RawData.fa.gz used in the first project.

© Jakob Willforss 2016 74

CHAPTER 5. FILE PERMISSIONS, ORGANIZING FILES AND UNIX HYGIENE

Figure 5.7: Demonstration of file link

To avoid copying it to the second project directory, the file can either be referred to through
long paths (often much longer compared to what is shown here), or through a file link which
acts as a shortcut.

$ pwd

/home/jakob/Project2

less can read .gz -files

$ less ../ Project1/Data/RawData.fa.gz

$ ln -s ../ Project1/Data/RawData.fa.gz

$ ls -l

lrwxrwxrwx 1 jakob jakob 12 apr 7 13:58 RawData.fa.gz -> \

../ Project1/Data/RawData.fa.gz

Note the beginning ’l’ for link filetype

$ less RawData.fa.gz

Here, we used the command ln -s ../Project1/Data/RawData.fa.gz to create a link
to the data file RawData.fa.gz. This gives us a shortcut to the file, which we then can use
to reach the data.

© Jakob Willforss 2016 75

CHAPTER 5. FILE PERMISSIONS, ORGANIZING FILES AND UNIX HYGIENE

5.5 UNIX hygiene

There are some good practices when working with biological data which can save significant
time and effort and make your analysis less prone to mistakes. When working with biological
data, those lessons are often learned the hard way. Here, we will do an attempt to lead you
past some of those hurdles.

Key points:

• Remove the write permission from files that you want to protect from being removed
or edited.

• Always keep at least one backup of your data. What would happen if your most
important hard drive stopped working right now? (Which it at some point will do).

• Keeping projects and analyses in clear file structures makes it much easier to keep
track of projects and analyses.

• Document the analyses properly. It is as important as a lab notebook. The analysis
must be possible to redo at a later point.

• Let the computer do the repetitive work for you to reduce human errors.

• Give your files descriptive names and correct file endings so that you quickly understand
what they represent.

We have mentioned file permissions previously in this chapter, and the point of repetitive
work will be revisited in the coming chapters. The remaining points will be discussed here.

5.5.1 Backup your data

"The rule of two:

If you have one copy of something you could as well have zero"

- CGP Gray, Cortex (paraphrased)

If you are working with any kind of sequencing data, make sure that you have it backed up.
Also, make sure that it is easy for you to make the backups so that you do them regularly. At
some point, your hard drives will fail. You will drop your computer on the ground, someone
will accidentally remove your files, you will pour coffee on it or the hard drive will simply
stop working due to age. Make sure that you are ready when this will happen. A good rule
of thumb is checking how prepared you are if an accident would happen right now. Are you
satisfied with how well backed up your system would be right now?

5.5.2 Proper organization of your files

It is easy to start out using none or a few folders for all your data, programs and docu-
mentation. In the beginning, it might be possible to keep track of everything. But, as your

© Jakob Willforss 2016 76

CHAPTER 5. FILE PERMISSIONS, ORGANIZING FILES AND UNIX HYGIENE

projects grow, this will soon not be feasible. It takes more and more time to keep track of
the files.

Organizing files properly pays off in the long run. If you organize your files well from the
beginning, it will help when the project starts expanding. Some important points:

• Have a clear folder structure for each of your projects, so that you know where each
file is supposed to be (raw data, analysis, documentation...)

• Use file links rather than copying your files between projects

5.5.3 Document your analyses

You need to keep track of how you have processed your data. It is as important as making
notes when performing work in the lab. Both you and others should be able to trace your
analysis.

One way to help the documentation is to gather sequences of UNIX commands into
scripts. This will be further discussed in the last chapter of this course.

5.5.4 Name your files properly

When you create files in UNIX, make sure that you assign the proper file endings to them.
If you for example are creating a FASTQ file, it should have a file ending quickly showing
the user that the file is formatted as a FASTQ file (.fastq or .fq are commonly used).

It is also worth putting some thought into the names of your files. If you name important
files file1, file2, file3.. you will have trouble later on keeping track of your files. This is
important, both as it saves you time in the long run and reduces the risk that you mix up
your files.

© Jakob Willforss 2016 77

CHAPTER 5. FILE PERMISSIONS, ORGANIZING FILES AND UNIX HYGIENE

5.6 Exercises

In this chapter, we will use a FASTQ file (named MhaptRNASeq.fastq) in the exercises. It
is highly recommended to write-protect raw files, such as FASTQ, to safeguard the original
sequence data that was delivered by the sequence facility.

5.6.1 Download the files to your home directory

This is the regular procedure. We will use the wget command to download the FASTQ file
from the Linux server:

$ wget http ://130.235.244.56/ unix/tarballs/MhaptRNASeq.fastq.gz

A copy of the FASTQ file should now be located in your current directory. Check by
using ls:

$ ls

Many bioinformatics tools can use gzipped files as input. It is highly recommended to
keep large files gzipped whenever possible. In this case however we will unzip the file for the
rest of the exercise.

gunzip MhaptRNASeq.fastq.gz

5.6.2 chmod

1. Make a copy (using cp) of the MhaptRNASeq.fastq file and call it MhaptRNASeq2.fastq:

$ cp MhaptRNASeq.fastq MhaptRNASeq2.fastq

2. Change file permissions -w of the MhaptRNASeq2.fastq that you just generated:

$ chmod -w MhaptRNASeq2.fastq

3. Use ls -l to compare the permissions of the two fastq files. Make sure that you
understand the difference of the file permissions before you continue. Also note the
difference in the results when using ls and ls -l.

4. Remove the MhaptRNASeq2.fastq file using the rm command:

$ rm MhaptRNASeq2.fastq

Press y to remove the file.

© Jakob Willforss 2016 78

CHAPTER 5. FILE PERMISSIONS, ORGANIZING FILES AND UNIX HYGIENE

5. Check the files in the directory by using ls again to ensure that MhaptRNASeq2.fastq
was removed. Now write protect the original MhaptRNASeq.fastq file before continuing
with the exercises.

5.6.3 Symbolic links

In order to organize your data files in an efficient and clear way it can be convenient to use
symbolic links. This will keep the original raw files in their place but still easily accessible
in the different projects where they may be used.

1. Make a new directory called Data using the mkdir command and use the cd command
to enter into the Data directory:

$ mkdir Data

$ cd Data

2. We want to make a symbolic link in the Data directory that points to the MhaptR-
NASeq.fastq file.

$ ln -s ~/ MhaptRNASeq.fastq MhaptRNASeq.fastq

Check with both ls and ls -l to see how the newly generated link works.

3. Use head to check the contents of the file that the symbolic link points to:

$ head MhaptRNASeq.fastq

Notice that you can work with the symbolic link in exactly the same way as if it was
a copy of the orignal file. In addition you save precious harddisk space since many of
the files you are using could be many Gb is size.

5.6.4 Further work (*)

Further work if you have some time:

1. * Make a set of directories that you will use to organise your bioinformatics project.
Which directories would you need? Think about an organization that you feel comfort-
able with and that will be useful in your research. One of the directories will contain
the raw data for this project.

2. * Make a symbolic link from the FASTQ-file in the raw data directory you just created
similar to how you did in the earlier exercise. However, this time name the symbolic
link something of your own choice (but keep the FASTQ extension so that it is clear
what type of file it is).

© Jakob Willforss 2016 79

CHAPTER 5. FILE PERMISSIONS, ORGANIZING FILES AND UNIX HYGIENE

Tip! Many raw sequence files will have very cryptic names but the name of the symbolic
link can be something that is easier to remember.

© Jakob Willforss 2016 80

CHAPTER 5. FILE PERMISSIONS, ORGANIZING FILES AND UNIX HYGIENE

5.7 Checkpoint

Before you continue, make sure that you can answer the following:

• File permissions can secure your files from other users. When can it be useful to secure
the files from yourself?

• What is the purpose of file links?

• Why is it important to use descriptive file names and a clear folder structure in your
project?

• Are your files backed up? Are you comfortable with your answer?

5.7.1 UNIX commands

Consider each command for a second. Make sure that you have an idea about what they do
before moving on.

Introduction to UNIX

man

ssh [-v]

Introduction to the file system

cd

ls [-l] [-lh]

pwd

Working with files in UNIX

cat

cp [-i]

file

head [-number]

less

mkdir

mv [-i]

nano

rm [-i] [-r]

rmdir

tail [-number]

Working with bioinformatic data

cut [-d] -f/-c

diff

grep [-c] [-A] [-v] [-f] [-i]

sort [-n] [-r]

uniq [-c]

wc [-l] [-w] [-m]

Organizing files

chmod

gunzip

gzip

ln [-s]

scp

tar [-cvzf] [-xvzf]

wget

© Jakob Willforss 2016 81

CHAPTER 5. FILE PERMISSIONS, ORGANIZING FILES AND UNIX HYGIENE

5.8 Further reading

5.8.1 Backup tool: rsync

One of the most commonly used programs on UNIX for creating backups of data is rsync.
rsync is able to mirror the content of a directory to another location. This other location
can be another directory on your computer, but can also be specified as a path on another
computer. The following command mirrors the local directory myfiles to the user jakob’s
home on another computer. (The colon : is used to separate the server address from the
path on the server computer).

$ rsync -avz myfiles/ jakob@192 .168.0.101:/ home/jakob

Two of the main strengths of rsync compared to other copying tools are:

• It is able to detect whether parts of the files already exist in the target directory. This
means that when running backups, it will only transfer files which have been edited or
created.

• It can keep the data compressed during transfer, which is especially useful when running
a backup over an internet connection.

A number of useful examples for the rsync command can be found here:

http://www.tecmint.com/rsync-local-remote-file-synchronization-commands/

5.8.2 Organizing projects

Every person working with biological data develops his or her own way of structuring
projects. But, there can be a value in learning from the experience of others. The article
A Quick Guide to Organizing Computational Biology Projects (Lewitter, F. et al.) presents
one approach with several ideas on how to apply the principle:

”Anyone unfamiliar with your project should be able to look at your computer files and
understand in detail what you did and why. This ’someone’ will in many cases be yourself
returning to a project some months later”.

http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000424

© Jakob Willforss 2016 82

http://www.tecmint.com/rsync-local-remote-file-synchronization-commands/
http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000424

Chapter 6

Working with file streams

6.1 What are file streams?

File streams, or standard streams, are standard ways for programs to communicate with the
rest of the computer. There are three standard streams used to interact with file content.
Those are listed in figure 6.1.

Standard input (stdin) Read file content into a program.

Standard output (stdout) Output content from the program.

Standard error (stderr) Similar to stdout, but used to separate error messages
from regular program output.

Figure 6.1: Types of file streams

File streams can be used to input the content of a file to a program, or to capture and
control the output from a program. The output of a file is generally directed to one of the
three following:

• To the terminal. Per default, the output is printed to the terminal from which you ran
the program.

• To a file. The output from a program can be redirected to a file to capture and store
the output.

• To another program/command. In UNIX many commands are designed to read input
directly from the output of another command.

Up until now, we have simply been printing the output back to the terminal. Now, we
will start looking into channelling output from commands to other commands, a process we
call piping.

83

CHAPTER 6. WORKING WITH FILE STREAMS

6.1.1 echo

Command usage: echo <text to echo>

For this chapter, we introduce the command echo. echo takes a string of text, and then
outputs it to the standard output. This is useful for testing purposes.

$ echo "This text is given to the echo command"

This text is given to the echo command

The string ”This text is given to the echo command” is echoed back to the terminal.

6.2 Redirecting input and output

6.2.1 Standard output

If we run the command echo, the output will go to the default location of standard output
- back to the terminal.

$ echo "This is some text"

This is some text

If we want to store the output for later usage, we can redirect the standard output to a
file using the > operator.

$ echo "This is some text" > for_later_usage.txt

$ cat for_later_usage.txt

This is some text

Note that if we redirect the output to a file, it will no longer be printed back to the screen.
Another thing to note is what happens if we redirect the standard output to an existing file.

$ cat for_later_usage.txt

This is some text

$ echo "More text" > for_later_usage.txt

$ cat for_later_usage.txt

More text

The line ”This is some text” is no longer present in the file after writing ”More text” to
it. When you open a new stream to an existing file using the > operator, the existing content
is removed and replaced with the new file content. If you instead want to append lines to
an existing file, you can use the >> operator.

© Jakob Willforss 2016 84

CHAPTER 6. WORKING WITH FILE STREAMS

$ cat for_later_usage.txt

This is some text

$ echo "More text" >> for_later_usage.txt

$ cat for_later_usage.txt

This is some text

More text

Note

A common way of accidentally removing important files is by redirecting the output
from commands into them. We will learn how to use file permissions to protect your
valuable data from this kind of accident in the next chapter.

6.2.2 Standard error

There is a second output stream that can be used to output information called standard error.
Many commands print useful error messages when they are used incorrectly which can

help understanding what went wrong. In many cases, those are captured in log files for later
reviewing. Standard error can be redirected using the 2> operator, or 2>> if you want to
add content to an existing file.

"non_existing_directory" could be any non existing path

$ cd non_existing_directory

bash: cd: non_existing_directory: No such file or directory

$ cd non_existing_directory 2> stderr.log

$ cat stderr.log

bash: cd: non_existing_directory: No such file or directory

Many larger programs produce both output to standard output and to standard error.
We can capture both outputs, and redirect them to separate locations.

$ large_program

This line is written to stdout

This line is written to stderr

$ large_program >stdout_example.txt 2>stderr_example.txt

$ cat stdout_example.txt

This line is written to stdout

$ cat stderr_example.txt

This line is written to stderr

In this case, ”This line is written to stdout” was written to standard output by the
program, and ”This line is written to stderr” was written to standard error. The developer

© Jakob Willforss 2016 85

CHAPTER 6. WORKING WITH FILE STREAMS

of the program can decide which output that should go to stdout and which output that
should go to stderr.

6.2.3 Standard input

The input can be read directly from a file using the < notation.
For example, we visited the wc -l in a previous chapter. The command reads input from

a file, and prints the file name together with the number of lines.

$ echo "Adding a line" > a_short_file.txt

$ echo "Adding another line" >> a_short_file.txt

$ wc -l a_short_file.txt

2 a_short_file.txt

$ wc -l < a_short_file.txt

2

In the first case, the output contained information about both the number of lines, and
from which file they came. This is not always desired. To avoid this, the file can be read by
the command as a file stream. When running wc -l < a_short_file.txt, the command
doesn’t know from where the lines are coming as it is reading them from the standard input,
so it simply outputs the number of lines.

6.3 The pipe

Up until this point we have been exploring what can be accomplished using single UNIX
commands. They are useful by themselves, but they really start to shine when they are
linked together into pipelines. The idea of the pipe is to link the standard output from
one command to the standard input of the next. This means that after the first command
has processed a file, its output can be fed directly into another command without storing
any intermediate stages as files. This provides us with a flexible tool for processing files in
any way we want. You will soon see some useful examples, combining the commands we
previously have gone through.

You tell UNIX to pipe the standard output into the standard input of the next command
by typing a pipe character (|) between the two commands.

On Swedish keyboards, the pipe key is located to right of the left shift key (same key
as the < > signs), and is typed by pressing <AltGr> + <pipe key>.

$ echo "This is a line" | wc -w

4

Here you see very simple example of a pipe. Here, we use the echo command to output
”This is a line” to the standard output. This output is then fed to the wc -m command

© Jakob Willforss 2016 86

CHAPTER 6. WORKING WITH FILE STREAMS

which subsequently counts and outputs the number words in the sentence. We will soon
come back to a variety of examples on how to use the pipe.

6.4 Filters

The purpose of filter commands is to make changes to file streams. They are used in the same
way as pipes, using the pipe operator (|) between the commands. Here, we will introduce
the filters sed and tr.

6.4.1 tr

translate or delete characters
Command usage: tr [-d] <character_set1> (<character_set2>) <file_name>

The tr command acts on single letters, and can either remove them or change them into
other letters.

$ echo "ATGXXCG" | tr "X" "N"

ATGNNCG

In this case, the Xes were changed into Ns. If we instead had wanted to remove them
entirely, we could use the following command.

$ echo "ATGXXCG" | tr -d "X"

ATGCG

We can also use tr in combination with the command rev (which reverses a string) to
get the reversely complementary letters of a nucleotide string. Here, we provided two sets
of letters. Note that those needs to be of the same size, and that letters in the first set are
replaced by the letter with corresponding position in the second set.

$ echo "ATGCG" | tr "ATGC" "TACG" | rev

CGCAT

6.4.2 sed

stream editor
Command usage: sed <edit_string> <target_file>

The purpose of sed is to edit streams. It is a versatile tool, and can be utilized for a wide
variety of text manipulations. Here, we will show how to use it to edit or replace segments
of text.

$ echo "A line of text." | sed "s/line//"

A of text.

© Jakob Willforss 2016 87

CHAPTER 6. WORKING WITH FILE STREAMS

The example above shows how sed can be used to remove chunks of text (compared with
tr which targets single letters). To perform substitutions, sed is provided a substitution
string. The format of this string is shown in figure 6.2.

"s/<pattern to match>/<pattern to replace with>/<options>"

Figure 6.2: Format of sed substitution string

g Global match - Replace more than one hit.

i Case insensitive match

Example of substitution string with global and case insensitive matching (note the
added ”g” and ”i”): "s/target/replacement/gi"

Figure 6.3: Useful sed options

In the case above, we matched the pattern ”line”, replaced it with nothing, and we used
it without specifying any options. Two useful options are shown in figure 6.3.

Next, we use it to extract the IDs from a GFF file.

example annotation.gff

ctg123 . gene 1000 9000 . + . ID=gene00001;Name=EDEN

ctg123 . mRNA 1050 9000 . + . ID=mRNA00001;Parent=gene00001

ctg123 . exon 1300 1500 . + . Parent=mRNA00003

ctg123 . exon 5000 5500 . + . Parent=mRNA00001,mRNA00002,mRNA00003

ctg123 . exon 7000 9000 . + . Parent=mRNA00001,mRNA00002,mRNA00003

ctg123 . CDS 1201 1500 . + 0 ID=cds00001;Parent=mRNA00001

ctg123 . CDS 3000 3902 . + 0 ID=cds00001;Parent=mRNA00001

ctg123 . CDS 5000 5500 . + 0 ID=cds00001;Parent=mRNA00001

ctg123 . CDS 7000 7600 . + 0 ID=cds00001;Parent=mRNA00001

ctg123 . CDS 1201 1500 . + 0 ID=cds00002;Parent=mRNA00002

Figure 6.4: Example GFF file

We revisit the example GFF file from the previous chapter (shown in figure 6.4). We
might be interested in retrieving the IDs for the coding sequences. There are some different
approaches here. In this case, we could get the coding sequence lines using grep "CDS".
This might be risky as it could catch lines with ”CDS” in other columns. Grepping for lines
containing "ID=cds" or even "ID=cds[0-9]\+;" is likely safer. The meaning of the one is
explained in the next chapter on pattern matching.

© Jakob Willforss 2016 88

CHAPTER 6. WORKING WITH FILE STREAMS

$ grep "ID=cds" example_annotation.gff

ctg123 . CDS 1201 1500 . + 0 ID=cds00001;Parent=mRNA00001

ctg123 . CDS 3000 3902 . + 0 ID=cds00001;Parent=mRNA00001

ctg123 . CDS 5000 5500 . + 0 ID=cds00001;Parent=mRNA00001

ctg123 . CDS 7000 7600 . + 0 ID=cds00001;Parent=mRNA00001

ctg123 . CDS 1201 1500 . + 0 ID=cds00002;Parent=mRNA00002

Next, we can pipe this into the cut command, to get the column with the IDs (column
9).

$ grep "ID=cds" example_annotation.gff | cut -f9

ID=cds00001;Parent=mRNA00001

ID=cds00001;Parent=mRNA00001

ID=cds00001;Parent=mRNA00001

ID=cds00001;Parent=mRNA00001

ID=cds00002;Parent=mRNA00002

Now, we can use sed to remove the parts before and after the CDS-ID.

$ grep "ID=cds" example_annotation.gff | cut -f9 \

| sed "s/ID=//"

cds00001;Parent=mRNA00001

cds00001;Parent=mRNA00001

cds00001;Parent=mRNA00001

cds00001;Parent=mRNA00001

cds00002;Parent=mRNA00002

$ grep "ID=cds" example_annotation.gff | cut -f9 \

| sed "s/ID=//" | sed "s/; Parent .*//"

cds00001

cds00001

cds00001

cds00001

cds00002

For sed matches, .* is used to match any number of non-line break characters.

© Jakob Willforss 2016 89

CHAPTER 6. WORKING WITH FILE STREAMS

6.5 Exercises

In this exercise, we will continue working with the potato genome files seen in previous
chapters. Now, we will start using the pipe. You will hopefully soon see how useful it can
be.

We will continue working with the same real datasets that we used in previous chapters.
If you don’t have them, you can download them by running:

$ wget http ://130.235.244.56/ unix/tarballs/genome_files.tar.gz

$ wget http ://130.235.244.56/ unix/tarballs/MhaptRNASeq.fastq.gz

If you do have them you could create links to them in the directory you are using for this
exercise.

6.5.1 Extracting information from GFF

Let’s start by retrieving some further information from the full GFF file.

1. We will extract the number of different features we have in the GFF file again, but now
without creating any intermediate files. Let’s start by printing part of the file using
the head command.

head representative_genes.gff

When you have the entire command in place, we will replace the head command with
the cat command to process the entire file. Using head while building the command
makes it much easier to see what is going on as we gradually extend it.

2. Make sure that the comments are removed from the output using grep -v. At this
point, your command will look something like:

$ head representative_genes.gff | grep -v "^#"

Run the command and inspect it to make sure that you have the correct output.

3. Extend the command with cut to get the column containing the gene features. Double
check the output.

4. Sort the gene features, and run the command.

5. Print the number of each gene feature using the uniq -c command.

6. Finally, replace the head with cat and run the entire command. Did you get 39028
genes?

6.5.2 Stream editing

In this chapter we introduced two ways of editing file streams: tr and sed. tr is used to
translate single characters into other characters or to delete single characters. sed can be
used to remove or update chunks of text in lines matching a given pattern.

© Jakob Willforss 2016 90

CHAPTER 6. WORKING WITH FILE STREAMS

Building a sed pipeline

We want to retrieve the IDs from the GFF file representative_genes.gff. As seen before,
the lines look like the following:

ST4.03ch01 BGI gene 152322 153489 . . . ID=PGSC0003DMG400015133;name="Defensin"

We are after the ID part for each line. In this particular case, we would like to extract
PGSC0003DMG400015133. There are some different was to approach this. Here, we will use
the sed command to match and remove text before and after the ID.

When substituting text with sed the syntax looks like the following:

$ sed "s/<target text >/<replacement >/"

When using sed we can use the pattern .* to match an arbitrary number of (non-
linebreak) characters.

1. Start by setting up a basic pipeline to print the content of the GFF-file into the sed

command. At first, your pipeline might look something like the following:

$ head representative_genes.gff | grep -v "^#" | \

sed "s/.*ID=/ replaced /"

The first ten lines are printed and comment lines starting with # are removed. Re-
maining lines are fed into sed. The sed is given the following string as argument:

s/.*ID=/replaced /

The s tells sed that we want to do a substitution of the matched pattern. The pattern
between the first and second slash ”.*ID=” is the part that is matched. In this case,
this will match any stretches of text in a line ending with ”ID=”. The final pattern
between the second and the third slash ”replaced ” is what will be inserted instead of
the matched pattern.

2. Run the command and take a look at the output. Do you see what is going on?

3. Now finish off the command. Instead of replacing the lines with the text ”replaced ”,
remove them. Match and remove the part of the line trailing the ID by extending the
pipe with another sed command matching the text coming after the pattern. In the
end you should have a single column containing 354788 IDs.

4. (*) Update the pipeline to calculate the exact number of the four different ID types
you have in your data. Did you get 141037 exon IDs?

© Jakob Willforss 2016 91

CHAPTER 6. WORKING WITH FILE STREAMS

6.5.3 Useful pipes

Here, we will present some useful combinations of commands for working with GFF-, FASTA-
and FASTQ-files.

1. Count the number of nucleotides in a FASTA file. Note that line endings counts as
one character. They can be removed using the command tr -d "\n". Below, you see
the first part of the command.

$ head representative_cds.fasta | grep -v "^>"

Build this command step by step by adding one command at a time and try to un-
derstand what happens with the output. We use the inverse grep here (the -v flag)
to match non-header sequence content. Remove the line endings and count the nu-
cleotides.

Did you get 36177057 nucleotides for the full sequence file? Does it matter whether
the FASTA is in single- or multi-line format when running this command?

2. The number of genes in the GFF file should be the same as the number of genes in the
FASTA file. Let’s investigate if that is the case.

We could easily get the number of coding sequences with a single grep command. Get
that number. Compare it to the number of genes we have found the GFF file. Are
they the same?

Does the counts match? Actually, they don’t. Something is going on here. This is
investigated in the final ’case exercise’ for this chapter.

3. The FASTA file representative_cds.fasta claims to contain coding sequences. This
would mean that they should start with ATG - the start codon. We can investigate this
using a pipe.

Let’s get the representative_cds.fasta in single-line format.

$ seqtk seq -l0 representative_cds.fasta \

> representative_cds.single.fasta

Now we are ready to start building the pipe. We can get all the sequence lines by using
grep.

$ head representative_cds.single.fasta | grep -v "^>"

Look at the output. What do we have at this point?

Next, cut the first three nucleotides for each sequence.

© Jakob Willforss 2016 92

CHAPTER 6. WORKING WITH FILE STREAMS

$ head representative_cds.single.fasta | grep -v "^>" \

| cut -c 1-3

Check the output. Finally, sort the output and get the counts for each codon.

$ head representative_cds.single.fasta | grep -v "^>" \

| cut -c 1-3 | sort | uniq -c

Now we are ready to try it for the whole file. This final output might be easier to
study if we add a second sort command after the uniq -c command. Compare how
it is sorted if you sort this output without and with the -n flag.

What conclusions can you draw from this output? Does all the coding sequences start
with the ATG codon?

4. * We have previously been extracting parts of lines using the cut command. The sed

command provides a higher flexibility, and is commonly used to remove or edit part of
the lines.

Your assignment here is to extract a three-column file from the GFF file containing
genes together with their chromosome sequence ID from the GFF file and their assigned
annotation. The three column file will have rows similar to the following:

ST4.03ch03 PGSC0003DMG400013378 Metalloendopeptidase

You can do this by using a combination of grep, cut and sed. Make sure that you
have the correct number of genes in your final output.

Hint: If you just wanted to get the first ID for each entry in a GFF file, you could
start out by doing something similar to the following:

$ head representative_genes.gff | grep -v "^#" \

| cut -f9 | sed "s/ID=//" | sed "s/;.*//"

© Jakob Willforss 2016 93

CHAPTER 6. WORKING WITH FILE STREAMS

6.5.4 The gene-count mystery (**)

In the previous exercise we counted the number of genes in the GFF file and the number of
coding sequences in the FASTA file. The coding sequences are said to be representative for
genes - there should be a single coding sequence per gene. So, what are those extra genes?
Are they extra genes, or are some missing from one of the files? This is something that needs
to be understood before we do further analysis.

To complicate things further our FASTA have two IDs for coding sequences and tran-
scripts, while the genes in the GFF file have gene IDs. Fortunately, we have the mapping
matrix which could be used to figure out to which gene the coding sequences belong. Note
that the IDs correspond to genes, coding sequences, peptides and transcripts, and can be
distinguished by the letter after ”DM”.

Our goal is to find the difference in represented genes between the GFF file and the
FASTA file. We also want to get the annotation and coding sequences for those genes. We
have outlined a possible approach below, but if you can think of other approaches, feel free
to try them.

1. * Start with outlining what the problem is. Which files do we have? What is the
content of each file? What end result do we want to get? One approach could be to
extract two gene lists containing all gene IDs represented in the FASTA and the GFF,
which we then can compare and see which IDs that are missing.

2. * Start with extracting the list of gene IDs for the GFF file. The number of gene IDs
should correspond to the number of genes we found in previous exercise.

3. * Next, we want to get the gene IDs for the coding sequences. To do this, we need
to translate the coding sequence IDs to their gene IDs. A useful starting point could
be to create a file containing only the coding sequence IDs. This could then be used
to extract corresponding gene IDs from the mapping file. (This step could take up
to 10-15 minutes for the computer to calculate, so make sure that it is working for a
smaller dataset before running the whole file).

4. * Double check the number of IDs you have. Do they correspond to the number of
GFF-file-genes and FASTA coding sequence entries? Check if you have any duplicates
in any of the files.

5. * Now, lets prepare the two files so that we can compare and check for diverging IDs.
At this point, you should be able to find the differing genes.

6. * Finally, extract the annotations for those entries. Also, retrieve their coding se-
quences.

7. * Can you draw any conclusions from this? It this a problem for the downstream
analysis? What could the reason for this difference be? Feel free to discuss this with
the teachers.

© Jakob Willforss 2016 94

CHAPTER 6. WORKING WITH FILE STREAMS

6.6 Checkpoint

Before you continue, make sure that you can answer the following:

• What is the purpose of the three different types of file streams: Standard input, stan-
dard output and standard error?

• How is piping useful for bioinformatic analyses?

6.6.1 UNIX commands

Consider each command for a second. Make sure that you have an idea about what they do
before moving on.

Introduction to UNIX

man

ssh [-v]

Introduction to the file system

cd

ls [-l] [-lh]

pwd

Working with files in UNIX

cat

cp [-i]

file

head [-number]

less

mkdir

mv [-i]

nano

rm [-i] [-r]

rmdir

tail [-number]

Working with bioinformatic data

cut [-d] -f/-c

diff

grep [-c] [-A] [-v] [-f] [-i]

sort [-n] [-r]

uniq [-c]

wc [-l] [-w] [-m]

Organizing files

chmod

gunzip

gzip

ln [-s]

scp

tar [-cvzf] [-xvzf]

wget

File streams

echo

sed

tr [-d]

© Jakob Willforss 2016 95

CHAPTER 6. WORKING WITH FILE STREAMS

6.7 Further reading

6.7.1 The tee command

In this chapter we showed how the output from programs can be redirected to different
locations. But what if you want the output both printed to the terminal and to a file? One
way is by using the tee command, which allows you to write the output to a file while also
passing the stream on to the standard output. See the following link for some examples.

http://linux.101hacks.com/unix/tee-command-examples/

6.7.2 awk

A common task when working with GFF files is to match lines based on a specific column.
This is not trivial to do only using grep. A nicer way of doing this is by using the command
line tool awk. awk is a highly powerful tool for working with file streams. If a task is hard
to do with grep, awk is often a good choice. Or, as a wise man said:

"The Enlightened Ones say that....

You should never use C if you can do it with a script;

You should never use a script if you can do it with awk;

Never use awk if you can do it with sed;

Never use sed if you can do it with grep."

For example, if you want to print lines in a GFF file for which the third column is gene,
you could do this by simply using the following awk-line:

awk ’$3 == "gene"’ my_file.gff

For a number of useful awk and sed examples, check the following link:

https://github.com/stephenturner/oneliners#awk--sed-for-bioinformatics

© Jakob Willforss 2016 96

http://linux.101hacks.com/unix/tee-command-examples/
https://github.com/stephenturner/oneliners#awk--sed-for-bioinformatics

Chapter 7

Pattern matching, variables, subshells
and loops

In this chapter we will take a closer look at some more conceptually challenging parts of
UNIX. We will start using using basic programming concepts which allows us to automate
the analysis and to process multiple files at once. What we gain from this is a powerful
toolset allowing us to easily process dozens or more files at once.

When will this be particularly useful? When working with sequence data, you will
frequently work with multiple samples in parallel. You need to do quality control and
trimming for all your twenty samples. Instead of running twenty separate commands, which
is both tedious and error prone, you can process all twenty samples in a single command.
By knowing how to use these concepts, you can let the computer do most of the work for
you.

7.1 Pattern matching

We provide specific files or strings to most of the UNIX commands. Using pattern matching
(also called regular expressions) the command can match a group of files or strings. We have
already been doing this for the ls command where we have listed files matching patterns
using the *-sign.

We are able to customize our patterns in a variety of ways. For example, figure 7.1 shows
how we can use square brackets to match one of multiple alternatives for a character in a
string.

7.1.1 Pattern matching UNIX paths

We mentioned that we already have used the *-pattern for matching any number of any non-
line break character in UNIX file paths. In figure 7.2, other available patterns for matching
file names are shown.

The square brackets ([]) are used to match one out of a set of characters, or a range of
characters ([0-9] matches zero to nine).

97

CHAPTER 7. PATTERN MATCHING, VARIABLES, SUBSHELLS AND LOOPS

Figure 7.1: Matching a string which could be either ’A’ or ’T’ in position 3

Note

Unfortunately the syntax for the pattern matching differs slightly between different
programs. Here, we are learning how to match file paths in UNIX. When you will try
matching in another context another set of symbols will be used.

? Matches any single character except newline

* Match any number of characters (zero or more)

{} Can match one of several comma-delimited words

[] Match one of the enclosed characters

[0-9] Match any number

[a-z] Match any lower case character

[a-zA-Z] Match any character

\ Turn off the special meaning of the following character

Figure 7.2: Selection of UNIX path patterns

Listing all files in directory

$ ls

sample1.fa sample2.fa sample3.fa sampleA1.fa README.txt

Listing all sample files in directory

The asterisk matches any number of characters

$ ls sample*

sample1.fa sample2.fa sample3.fa sampleA1.fa

© Jakob Willforss 2016 98

CHAPTER 7. PATTERN MATCHING, VARIABLES, SUBSHELLS AND LOOPS

Listing sample files where the name end with 1 or 2

$ ls sample [12].fa

sample1.fa sample2.fa

Listing sample files where the name end in a number

$ ls sample [0 -9].fa

sample1.fa sample2.fa sample3.fa

The question mark can be used to match any single character.

Listing all files in directory

$ ls

sample1.fa sample2.fa sample3.fa sampleA1.fa README.txt

Listing sample files ending with ’A’,

followed by any character or number

$ ls sampleA ?.fa

sampleA1.fa

The curly brackets ({}) can be used to match one of several words. It can also be useful
for creating multiple files or directories in one command.

$ ls

sample11.fa sample12.fa sample21.fa sample22.fa

$ ls sample {11 ,22}.fa

sample11.fa sample22.fa

$ mkdir {analysis ,results}_run1

$ ls

analysis_run1 results_run1

7.1.2 Using pattern matching with grep

Pattern matching in grep can be used any time you want to extract subsets from files based
on patterns rather than exact strings.

For example, if you have different isoforms of genes in your FASTA file, where the dif-
ferent isoforms for a particular gene are distinguished with a ” i1”, ” i2”... suffix, and you
only are interested in the first isoform, those can be extracted in the following way (the
genes_with_isoforms.fa file is shown in figure 7.4):

© Jakob Willforss 2016 99

CHAPTER 7. PATTERN MATCHING, VARIABLES, SUBSHELLS AND LOOPS

. Match any single character except newline

* Match any number of the preceding pattern

^ Match the following expression at beginning of line

$ Match the preceding regular expression at end of line

\+ Match the preceding pattern one or more times

[] Match one of the enclosed characters

[0-9] Match any single digit

[a-z] Match any single lower case character

[a-zA-Z] Match any character

\ Turn of the special meaning of the following character

Figure 7.3: Selection of grep regex

genes with isoforms.fa

>geneA_i1

ATCGATCGATCG

>geneA_i2

ATCGATCGATGACTCG

>geneB_i1

ATCGATCGATCGAAA

>geneB_i2

ATATGCTAGCCGATCGATCG

>geneB_i3

ATATATTAGCGA

Figure 7.4: Example FASTA containing genes with isoforms

$ grep -A1 " >.*_i1" genes_with_isoforms.fa

>geneA_i1

ATCGATCGATCG

>geneB_i1

ATCGATCGATCGAAA

In a previous chapter we mentioned the "ID=cds[0-9]\+;" that could be used to match
lines in a GFF file containing coding sequence IDs. This pattern would match the exact

© Jakob Willforss 2016 100

CHAPTER 7. PATTERN MATCHING, VARIABLES, SUBSHELLS AND LOOPS

letters ID=cds, followed by one or more numbers which finally should be ended by a semicolon
(;).

This is only a subset of the possible pattern matches. If you need to match a particular
pattern - there is probably a way to do it.

7.2 Variables

7.2.1 What is a ’variable’?

A variable is like a labeled box which you can put different things in. The label makes the
box easy to refer to. The things you put in the box can for instance be text, numbers or
even file paths. Figure 7.5 shows a box labeled my_variable. The box contains the string
of nucleotides: AAGTGTACGT... We can now talk about the box containing the nucleotides,
instead of keeping track of the exact nucleotide sequence.

Figure 7.5: Box representing a variable containing a value were the box is labelled
”my variable” and contains a string of nucleotides

A powerful thing with using variables is that we easily can swap its values while retaining
the same label. In our example here, we could swap the nucleotide sequence in the box
to another sequence, for instance CCCCCCCC.... The label of the box would be the same
(my_variable), but the content has changed (see figure 7.6).

This will prove to be very useful when we want to go through a number of file names.
By using this, we can avoid typing out the full filename for each command, and can instead
use the label while changing the content of the box.

7.2.2 Variables in UNIX

A variable in UNIX is a way of linking a string of text (the label) to a value (the content of
the box). Variables are defined by writing the name of the variable, directly followed by an
equals sign and the value (no white spaces are allowed around the equals sign). We retrieve
the value of the variable either by simply typing a dollar sign followed by the variable name

© Jakob Willforss 2016 101

CHAPTER 7. PATTERN MATCHING, VARIABLES, SUBSHELLS AND LOOPS

Figure 7.6: Same box as in previous figure, with the same label, but the content has been
changed

Note

A common problem when starting out with variables is to mix up the variable name
(the label of the box) and what the variable refers to (what is in the box). This could
lead to cases were we are trying to do things with ’variablename1’ and ’variablename2’
when we actually are interested in the content of the variables.

$myvar or using the full syntax and also type out curly braces around the variable name
${myvar}.

© Jakob Willforss 2016 102

CHAPTER 7. PATTERN MATCHING, VARIABLES, SUBSHELLS AND LOOPS

Let ’s create the variable from our box example

Here , the name of the variable is "my_variable"

The content of the variable is "AAGTGT ..."

$ my_variable="AAGTGTACGTAGCTAGCTAGC"

We retrieve the value stored in the variable labeled

’my_variable ’ by prepending the dollar sign and surrounding

the name with curly braces

$ echo ${my_variable}
AAGTGTACGTAGCTAGCTAGC

If we not prepend the dollar sign ,

my_variable is used as a regular string

$ echo my_variable

my_variable

We can update the content of the variable

$ my_variable="CCCCCCCCCCCCCCCCCCCCC"

Now , we get a different output

$ echo ${my_variable}
CCCCCCCCCCCCCCCCCCCCC

We can embed the variables in strings

$ echo "My nucleotide sequence: ${my_variable}"
My nucleotide sequence: CCCCCCCCCCCCCCCCCCCCC

Note

It is considered good practice to expand the variable using the full ${variable}

syntax rather than the shorter $variable. The shorter syntax is mostly fine, but
will in some cases fail. For example when expanding ”${variable}moretext” or
”$variablemoretext” the first example will get the correct value from the variable,
while the second will attempt to try to get the value from the variable ”variablemore-
text”. There are also special cases (mentioned in the ”further reading”) where the full
syntax is required.

A variable can store a value for later reuse. This is both useful if you are using a particular
value repeatedly as it gives a short and nice way of referring to it, or if you are generating
multiple values which you want to use in a similar context (for example: performing a
particular operation on multiple sample files). You will see examples of both cases in the
section about loops, and the coming chapter about scripts.

One useful way of using variables is to use them to store long paths.

© Jakob Willforss 2016 103

CHAPTER 7. PATTERN MATCHING, VARIABLES, SUBSHELLS AND LOOPS

Typing out full paths can be tedious

$ head ../ other_analysis/first_experiment/data/raw_file1.fa

... first ten lines of raw_file1.fa

$ head ../ other_analysis/first_experiment/data/raw_file2.fa

... first ten lines of raw_file2.fa

A variable can save us some sanity here

$ data_path =../ other_analysis/first_example/data/

$ head ${data_path }/ raw_file1.fa
... first ten lines of raw_file1.fa

$ head ${data_path }/ raw_file2.fa
... first ten lines of raw_file2.fa

7.3 Subshells

Subshells allows us to run multiple commands within one command. It also allows us to
save the output from a command directly into a variable.

There are two ways to write subshells:

• Parenthesis syntax: $(command)

• Back-tick syntax: ‘command‘

It is recommended to use the parenthesis-syntax. This allows for nested subshells (sub-
shells within subshells). In the example below we capture the output from a subshell in the
variable entry_count. Or in other word, we take the output from the command and store
the output in the box labeled entry_count.

$ grep -c "^>" nucleotides.fa

173

$ entry_count=$(grep -c "^>" nucleotides.fa)

$ echo "My count is: ${entry_count} entries"

My count is: 173 entries

This way we can store and reuse output from the command performed in the subshell.

7.4 Loops

By using loops we can execute one or or more commands for a collection of data such as a
number of files, a number of lines in a file or a number of words in a string.

You often have multiple samples which you want to analyse. Instead of typing out the
commands for every single file, you can automate this using loops. This spares you a lot of
typing, improves the reproducibility and reduces the risk for typing errors.

© Jakob Willforss 2016 104

CHAPTER 7. PATTERN MATCHING, VARIABLES, SUBSHELLS AND LOOPS

Figure 7.7 illustrates this. We walk through four files, and put their paths one and one
in our variable current_file. We can then process each of them by itself using any desired
command. In this case the command Process $current_file will be executed four times.
One time per file.

Figure 7.7: Illustration of looping over and processing four files. File names will be placed
one by one in the box.

Make sure that you have a good understanding of pattern matching, variables and sub-
shells before moving on. The next part will use them all.

7.4.1 Looping over a set of files

A common way of determining the set of files to loop over is by using pattern matching. For
example, if we want to perform a certain set of operations on all files in a directory, we can
use *-wild card matching together with the desired commands in a for loop.

$ ls

file1.txt file2.txt a_file.txt a_file2.txt

$ for file in *; do echo ${file}; done

file1.txt

file2.txt

a_file.txt

a_file2.txt

$ for file in *; do echo "The current file is: ${file}"; done

The current file is: file1.txt

The current file is: file2.txt

The current file is: a_file.txt

The current file is: a_file2.txt

There are several things going on here. A break-down of how the loop is written is found
in figure 7.8 with further explanations in figure 7.9.

In the next example, a for loop is used to give an overview of the content for four FASTA
files. Here, the number of entries were calculated, but any of the commands you learned can

© Jakob Willforss 2016 105

CHAPTER 7. PATTERN MATCHING, VARIABLES, SUBSHELLS AND LOOPS

Figure 7.8: The different parts of a for-loop

1. The for statement, starting the loop

2. The name of the loop variable which will get the values you are looping over
(here, "current_file")

3. Pattern matching the files you want to loop over - Followed by a semi-colon
and the ”do” statement

4. One or more commands to run for each file - Each ending with a semi-colon

5. The use of the loop variable, which will contain the name of the file it is currently
looping past

6. The done statement ends the loop statement

Figure 7.9: A breakdown of the different components in figure 7.8

be used here.

$ ls

nucl1.fa nucl2.fa nucl3.fa nucl4.fa

$ for f in *; do count=$(grep -c "^>" ${f}); \

echo "${f}: ${count} entries"; done

nucl1.fa: 173 entries

nucl2.fa: 215 entries

nucl3.fa: 98 entries

nucl4.fa: 133 entries

In this loop two commands are run per iteration. (Are you keeping track of the variables
and subshells?)

• count=$(grep -c "^>" ${f}) uses a subshell to retrieve the number of entries present
in the fasta file and store this number in the variable count.

• echo "${f}: ${count} entries" prints the file name together with the number of

© Jakob Willforss 2016 106

CHAPTER 7. PATTERN MATCHING, VARIABLES, SUBSHELLS AND LOOPS

entries found within it.

© Jakob Willforss 2016 107

CHAPTER 7. PATTERN MATCHING, VARIABLES, SUBSHELLS AND LOOPS

7.5 Exercises

Here, you will get acquainted with the following concepts:

• Pattern matching

• Variables

• Subshells

• Loops

It can take some time to get used to these concepts. But it is time well spent. These
concepts can reduce time and effort for your processing while increasing reproducibility.
When you grasp them, you can get a lot done with very few commands.

7.5.1 Variables and subshells

To assign a variable, we type the name of the variable followed by an equals sign and the
content of the variable.

$ my_variable="Content of the variable"

To retrieve the value of a variable we put a dollar sign in front of it, and surround it with
curly braces.

$ echo ${my_variable}
"Content of the variable"

1. Store the text ”Hello world” in a variable called ”hello world var”. Use the command
echo to print the content of the variable.

2. Now, let’s use a variable to bookmark your current location in the file system. Retrieve
the path by running the pwd command in a subshell, and create a variable where you
assign the path as value.

$ bookmarked_path=$(pwd)

The variable should now contain your current path. Check it with the echo command.

3. Use the variable to list the files in the bookmarked folder. This could be done by
running:

$ ls ${bookmarked_path}

Did it work?

© Jakob Willforss 2016 108

CHAPTER 7. PATTERN MATCHING, VARIABLES, SUBSHELLS AND LOOPS

4. Go to another directory and see whether you can use the cd command with your
variable to go directly to the bookmarked folder.

5. (*) Use a subshell to calculate the number of FASTA entries in representative_cds.fasta

and save the number to a variable. Save the number of nucleotides in another vari-
able. Then you should be able to print a string with information about the file and its
content like the following:

$ echo "File contains ${lines} lines and ${nucl} nucleotides"

7.5.2 Loops and pattern matching

Download the tar-ball for this exercise.

$ wget http ://130.235.244.56/ unix/tarballs/unix_course_chapter7.tar.gz

Inside it you will find a set of ten FASTA files, each containing one hundred FASTA
entries. We will work with all of those ten files at once. We will start out by checking how
they are structured.

1. For some commands, we are able to get information about all ten files without using
loops. First, get the number of FASTA entries for all the files using grep and the
* pattern instead of the file path. The * can be used to match any number of any
characters in Bash.

$ grep -c "^>" *

Try the same thing with the wc command. Which of the subsets contains the most
data? Why is the number of lines the same, but the number of characters in the files
different?

2. Next, we want to calculate the total number of nucleotides in each FASTA. In this case
we need to change approach. Try what you get if attempting the following:

$ grep -v "^>" * | tr -d "\n" | wc -m

Here, we attempted to get the nucleotides for all the files similarly to how we did in
the stream chapter. In this case, the pattern matching will not give us output for each
single file. The tr -d and wc -m will see their input as a single stream, and calculates
the total number of nucleotides.

3. In order to calculate information for the individual files we will use a for-loop. Take
a look at the illustration of a for-loop earlier in this chapter. Do you understand the
different parts? We will now build this loop step by step.

© Jakob Willforss 2016 109

CHAPTER 7. PATTERN MATCHING, VARIABLES, SUBSHELLS AND LOOPS

4. First specify what you want to loop over. Use a pattern which matches all the FASTA
files. Also, specify the name of the variable which will get the values from the differ-
ent files. End the start statement with ; and do. At this point, our statement looks
something like the following:

for target_fs in *; do

5. Next, we will specify what the loop should do, and then terminate it with the done

statement. As a start, let’s just print the file names that we loop over. Do this by
entering an echo statement with the target_fasta as argument and end the statement
with ; and done:

for target_fs in *; do echo ${target_fs}; done

This loop should be working. Try it!

6. Can you adjust the pattern so that only the first three files are listed? Can you adjust
it so that the files with numbers 3, 6, 8 are listed?

7. Create another file in the same directory with another file ending, for example myfile.txt
Now echo all FASTA files, while excluding the .txt file.

8. We can run multiple commands for each step in the loop. If we would like to have two
separate echo statements, we could do the following:

$ for target_fs in *; do echo "New file!"; \

echo ${target_fs }; done

Each command is ended by a semi-colon.

7.5.3 Working with multiple files at once

Your goal is to build a loop steps over a given set of files, calculating the number of nucleotides
present in each of them and prints a nice descriptive line together with the number. This
principle could be extended to any set of files and to any commands. Needless to say, this is
frequently very useful.

There are two parts here. Putting together the loop and putting together the needed
commands.

1. Let’s print the number of nucleotides in each file. We can calculate this for a single
file by running the command:

$ grep -v "^>" myfile.fasta | tr -d "\n" | wc -m

© Jakob Willforss 2016 110

CHAPTER 7. PATTERN MATCHING, VARIABLES, SUBSHELLS AND LOOPS

Put this command into a subshell, and save the variable. Try it out on a FASTA file
and run echo for the content of the variable to verify that it works.

2. We can now print this value inside a string:

$ echo "There is a variable in my string: ${myvar}"

Run a command printing "The file contains <your value> nucleotides", and
insert the number of nucleotides you received into the string.

3. The loop part is very similar to the one used in the previous exercise. We want to
match all FASTA files present in the directory. To match files with the file ending .fa

we can use the pattern *.fa Put together a loop printing the names of each FASTA
file in the directory.

4. Now, we have all pieces we need to finish the loop. What you need is:

• The for loop iterating over the FASTA files in the directory.

• A subshell command retrieving the number of nucleotides present in the current
FASTA file.

• An echo command which prints a string with inserted variables for sample name
and number of nucleotides calculated by the subshell.

After running this loop, I got the following output:

File: subset10.fa has 91659 nucleotides

File: subset1.fa has 93099 nucleotides

File: subset2.fa has 83619 nucleotides

File: subset3.fa has 95505 nucleotides

File: subset4.fa has 94431 nucleotides

File: subset5.fa has 85503 nucleotides

File: subset6.fa has 98643 nucleotides

File: subset7.fa has 86391 nucleotides

File: subset8.fa has 87846 nucleotides

File: subset9.fa has 95838 nucleotides

7.5.4 Processing multiple files (**)

If you have limited time - go through chapter 8 before wrestling with this exercise.

You likely want to use loops any time where you are working with several samples. This is
also true when using terminal-based bioinformatic software. Here, we will show an example
with the program seqtk, but this applies for any software.

Remember how we converted multi-line FASTA files to single-line format? We used the
command:

© Jakob Willforss 2016 111

CHAPTER 7. PATTERN MATCHING, VARIABLES, SUBSHELLS AND LOOPS

seqtk seq -l 0 multi_line.fa > single_line.fa

We can use the same command to get multi-line format by adjusting the -l 0 argument
to a particular width (for example -l 60). You task is to reformat the ten FASTAs. The
biologist asking for the data have some demands:

• The data should be in a single file, containing all the sequences from the ten samples.

• You should be able to distinguish from which sample the different sequences came.
This is best done by creating a new set of files where you have added annotation to
the header lines.

• The data should be in multi-line format.

Think about the problem for a while. What changes do you need to make to each FASTA?
Which step or steps is best done as a part of a loop? Are some steps easier to do before or
after combining the different samples? If you get stuck on this one, ask the teachers and you
will get some hints.

One hint - If you want to append text to the start of the header lines, you could use the
sed command, matching the > signs and replace them with "> ${filename}. One example
is shown below (you will need to adjust it to your case).

$ loopvar=fasta1.fa

$ cat ${loopvar} | sed "s/>/>${loopvar }/"

After delivering the data you got an additional request. Could you provide a subset of
the data only containing sequences from sample 2, 5, and 8?

© Jakob Willforss 2016 112

CHAPTER 7. PATTERN MATCHING, VARIABLES, SUBSHELLS AND LOOPS

7.6 Checkpoint

Before you continue, make sure that you can answer the following:

• When can we use the two types of pattern matching introduced here? Can you name
useful examples in both cases?

• What are variables, and what can they be used for?

• When can subshells be useful?

• How can loops help both reducing error rate and workload in your processing?

7.6.1 UNIX commands

Consider each command for a second. Make sure that you have an idea about what they do
before moving on.

Introduction to UNIX

man

ssh [-v]

Introduction to the file system

cd

ls [-l] [-lh]

pwd

Working with files in UNIX

cat

cp [-i]

file

head [-number]

less

mkdir

mv [-i]

nano

rm [-i] [-r]

rmdir

tail [-number]

Working with bioinformatic data

cut [-d] -f/-c

diff

grep [-c] [-A] [-v] [-f] [-i]

sort [-n] [-r]

uniq [-c]

wc [-l] [-w] [-m]

Organizing files

chmod

gunzip

gzip

ln [-s]

scp

tar [-cvzf] [-xvzf]

wget

File streams

echo

sed

tr [-d]

Pattern matching, variables, subshells
and loops

© Jakob Willforss 2016 113

CHAPTER 7. PATTERN MATCHING, VARIABLES, SUBSHELLS AND LOOPS

7.7 Further reading

7.7.1 Variable expansion

A useful way of manipulating strings in UNIX is the so called variable expansion. When
retrieving the value for a variable using the ${} syntax, the retrieved value can be edited
using various variable expansions. You can for example easily remove suffixes or file paths
by retrieving your value as follows:

$ my_file =/home/jakob/Desktop/nucleotides.single.edit.fa

$ echo ${my_file}
/home/jakob/Desktop/nucleotides.single.edit.fa

$ echo ${my_file %.*}
/home/jakob/Desktop/nucleotides.single.edit

$ echo ${my_file %%.*}
/home/jakob/Desktop/nucleotides

$ echo ${my_file##*/}
nucleotides.single.edit.fa

The % matches a pattern to remove at the end of the file name, while %% matches an
arbitrary number of time. The # does the same for the start of the file name. The syntax is
a bit messy, but it is a highly usable tool. Further examples (and explanation of the syntax)
can be found at the following link:

https://www.gnu.org/software/bash/manual/html_node/Shell-Parameter-Expansion.

html

7.7.2 Regular expressions

You have seen two types of pattern matching/regular expressions used by UNIX in this
chapter. There are even more types of regular expression out in the world. When running
grep together with the -P flag you get an even more powerful type of regular expression -
The Perl regular expressions. Those are commonly used in more modern languages than the
one used in UNIX. An overview of available patterns are found in the following link:

http://regexlib.com/CheatSheet.aspx

© Jakob Willforss 2016 114

https://www.gnu.org/software/bash/manual/html_node/Shell-Parameter-Expansion.html
https://www.gnu.org/software/bash/manual/html_node/Shell-Parameter-Expansion.html
http://regexlib.com/CheatSheet.aspx

Chapter 8

Introduction to scripting

8.1 Bash and scripting

Bash is a programming language, and the most common language used in the UNIX termi-
nals. It is also the type of UNIX terminal that we have been using in this course.

Here, we will start scratching the surface of scripting - putting together small computer
programs to run sequences of commands. Scripting is not necessarily as intimidating as it
might sound. Building scripts and programs (scripts are in principle small programs) can
be a highly complex task involving large teams of people, but could as well just be putting
together a bunch UNIX commands for later reuse.

Two main advantages of collecting commands into scripts are:

• Reproducibility - If you gather the commands you have been running to process a
specific set of data in a script, you (or someone else) will easily be able to re-run the
exact same steps at a later point.

• Creating your own tools - Often you find yourself re-running the same commands
to process data in different contexts. You can gather those commands into a script,
allowing you to perform the same task in a single command by invoking your script.

Scripts are commonly used on computational clusters (like UPPMAX) by their queue
systems which use them to run your commands at a later time.

This chapter is a starting point for scripting and programming. It is useful already at
this level. But, if you enjoy this, there is a lot more to learn. If you are interested in learning
more, take a look in the ”Further reading” for this chapter.

8.2 Building a simple Bash script

There is a long going tradition of writing a program that prints ”Hello world” as your first
program when encountering a new language. In figure 8.1, you see ”Hello world” as a Bash
script.

115

CHAPTER 8. INTRODUCTION TO SCRIPTING

The script is shown in figure 8.1. (sh is a common file ending for this kind of scripts, and
comes from the term shell, which is another name for the terminal). There are two lines in
the script. The second one is a simple echo command, similar to what we have been using
before. The first line tells the script which interpreter that the computer should use to read
the script. The line starts with #!, followed by the absolute path to the interpreter which
the computer uses to read Bash programs. The initial #! is the same for all scripts, while
the interpreter is different for each computer language.

hello world.sh

#!/bin/bash

echo "Hello world :)"

Figure 8.1: The classical script ”hello world” in Bash

In order to run the script we must first set the appropriate permissions - We need to
have read (r) and execution (x) rights for the script. Then, we can simply type out the path
of the script to run it. Note - If the script is in the present working directory, the path is
specified using the current directory sign (.).

$ ls -l

-rw -rw-r-- 1 jakob jakob 33 apr 10 08:11 hello_world.sh

$./ hello_world.sh

bash: ./ hello_world.sh: Permission denied

$ chmod +x hello_world.sh

$./ hello_world.sh

Hello world :)

The .sh-suffix is commonly used for scripts written in Bash or other terminal languages.
So, there are some new things here to keep track of here. They are listed in 8.2.

8.2.1 Comments in Bash scripts

Sometimes, we want to have text in our scripts which isn’t interpreted as commands. This
can be done by adding a hash-sign (#) in front of the text. A commented version of the
Hello world-script is seen in figure 8.3. Note that the output from this version of the script
is identical to the script we saw in figure 8.1.

$ chmod +x hello_world_commented.sh

$./ hello_world_commented.sh

Hello world :)

© Jakob Willforss 2016 116

CHAPTER 8. INTRODUCTION TO SCRIPTING

1. The script consists of an initial line starting with #! and the path to the inter-
preter (#!/bin/bash).

2. After the initial line, the script contains one or more Bash-commands
(echo "Hello world :)").

3. To run it, the script needs to have read and write permissions (chmod +x script

and when read permission isn’t set: chmod +r script).

4. To run it, the path to the script is used. If in the current directory, this is
specified by ./script

Figure 8.2: Building and running a Bash script

hello world commented.sh

#!/bin/bash

This script prints "hello world :)"

These two lines are only here to describe the script

echo "Hello world :)"

Figure 8.3: ”Hello world” - with comments

8.3 Gathering processing steps in a script

We often need to perform a sequence of commands to process our data. Those commands can
be UNIX-commands, or different bioinformatic programs. If those commands are gathered
in scripts, this means that you - and other persons - are able to re-run the exact same steps
at a later point.

In figure 8.4 we have a script retrieving information about the content of a specific FASTA
file. All this information can then be retrieved and printed by running the script.

© Jakob Willforss 2016 117

CHAPTER 8. INTRODUCTION TO SCRIPTING

investigating nucleotides.sh

#!/bin/bash

"nucleotides.fa" must be in the same directory as this script

echo "Calculating information about nucleotides.fa"

echo "Number of entries"

grep -c "^>" nucleotides.fa

echo "Number of lines"

wc -l < nucleotides.fa

echo "Number of nucleotides"

grep -v "^>" nucleotides.fa | tr -d "\n" | wc -m

Figure 8.4: Script calculating information about a FASTA-file named ”nucleotides.fa”

$ ls

investigating_nucleotides.sh nucleotides.fa

$ chmod +x investigating_nucleotides.sh

$./ investigating_nucleotides.sh

Calculating information about nucleotides.fa

Number of entries

14956

Number of lines

29912

Number of nucleotides

747800000

Now we can quickly re-run our analysis at a later point.

8.4 Providing input to a script

In the previous section you saw a way to gather processing steps in a script to easily reproduce
the analysis steps.

In some cases our analyses are specific for one single project, and will only be reproduced
for that particular case. In other cases, the steps will be repeated many times in different
projects - Similarly to how we have been using commands like grep, sort and cut in many
different contexts.

It turns out that we with a few changes can take the script in figure 8.4 and generalize
it so that it could calculate information about any FASTA file. The only thing we need to

© Jakob Willforss 2016 118

CHAPTER 8. INTRODUCTION TO SCRIPTING

change is making it take an arbitrary file as input argument.
Inside the script, there is a special variable called argv, which contains all arguments

that you have provided to the command line when running it in the terminal. For example,
if you have a script called my_script.sh, and run it as shown below, we are able to retrieve
the provided value additional_text from the argv-variable within the script.

$./ my_script.sh additional_text

The argv values can be accessed within the script by typing ${number} with number re-
placed by the position of the argument. In the previous case, ${0} will give ./my_script.sh
and ${1} will give additional_text.

Figure 8.5 shows how our previous script could be generalized to calculate statistics about
any provided FASTA file.

fasta stats.sh

#!/bin/bash

Read an arbitrary FASTA file through argv

echo "Calculating information about ${1}"

echo "Number of entries"

grep -c "^>" ${1}

echo "Number of lines"

wc -l < ${1}

echo "Number of nucleotides"

grep -v "^>" ${1} | tr -d "\n" | wc -m

Figure 8.5: Script calculating information about any FASTA provided on command line

Now, we can use this general script to calculate information about any FASTA file.

© Jakob Willforss 2016 119

CHAPTER 8. INTRODUCTION TO SCRIPTING

$ ls

fasta_stats.sh nucleotides.fa other_nucleotides.fa

$ chmod +x fasta_stats.sh

$./ fasta_stats.sh nucleotides.fa

Calculating information about nucleotides.fa

Number of entries

14956

Number of lines

29912

Number of nucleotides

747800000

$./ fasta_stats.sh other_nucleotides.fa

Calculating information about other_nucleotides.fa

Number of entries

6672

Number of lines

13344

Number of nucleotides

333600000

Hopefully this has provided a glimpse of the usefulness of Bash scripts. We will explore
some examples in the exercises. If you found this interesting, I encourage you to continue
exploring scripting and programming. You are able to do many useful things already with
what you have learned here, and at the same time - each additional piece of knowledge opens
up new possibilities.

© Jakob Willforss 2016 120

CHAPTER 8. INTRODUCTION TO SCRIPTING

8.5 Exercises

The word ”script” could encompass a range of different computer programs. It is often less
foreign than it sounds. You will see that the step from your current UNIX knowledge to
writing you first scripts is quite small.

When working with UNIX, scripts are especially useful for putting together a sequence
of commands performing a specific task. This task could be to perform a particular analysis,
or to do a more general task. When doing processing in UNIX, it is generally a good idea
to gather processing steps into scripts.

8.5.1 Hello, world!

Let’s first write the well-known ”Hello, world” script together.

1. Start by opening an empty file in nano. Add the #! signs and the absolute path to the
Bash interpreter at the top.

#!/bin/bash

2. Below this line, you could add any commands. Now, we add an echo statement,
together with a line similar to ”Hello world”.

#!/bin/bash

echo "Hello world :)"

3. Save and exit. You have now written your very first script. Next, change its file
permissions to make it executable. In this case the file is named my_script.sh.

$ chmod +x my_script.sh

4. Now you can run the script by specifying its path. If it is in your present working
directory you need to explicitly show that by typing out ./ before the script (. refers
to the current directory).

$./ my_script.sh

Try it. This is the basic structure of the command. The content of the command could
easily be exchanged with sequences of commands that you have learned during this
course.

5. If we want to make more general scripts which can act on particular files, we could
provide input arguments using the argv variable. This variable retrieves information

© Jakob Willforss 2016 121

CHAPTER 8. INTRODUCTION TO SCRIPTING

from the command used to run the script. If we edit our Hello world script to the
following:

#!/bin/bash

echo "Hello ${1} :)"

We can now run it with an argument, saying ”Hello” to an arbitrary person.

$./ my_script.sh Jakob

Hello Jakob :)

This concept is highly useful if we want a script able to read from and output to
arbitrary files.

8.5.2 Retrieving information from a FASTA

1. In this chapter, your were introduced to the script fasta_stats.sh. Implement it,
and run it on the potato genome FASTA with the coding sequences. How many
entries do you find? How many lines? How many nucleotides? (Did you find 36177057
nucleotides?)

2. * Could you think of any other useful information to extract from the FASTA? Add it
to the script!

3. ** Extend the script so that it instead of taking a single file takes a directory with
FASTAs, and prints information about all the contained FASTA files. Try it on the
set of FASTA files we used in the previous chapter.

8.5.3 Building a useful script on your own (*)

As a final exercise, let’s build a useful script which we could use later to retrieve information
from our files. If you have an idea in mind of something which could be interesting or useful
for you, feel free to try doing it! You could discuss with the teachers how to approach it,
and what would be reasonable.

One useful example could be to do a FASTA entry retriever. This script could take
FASTA file and an ID as input. It should then output the sequence and useful information
for that particular entry. Information which might be useful could be:

• The header of the ID (in a nicer format than the regular FASTA header)

• The sequence belonging to the ID.

• Information about the sequence (length, number of different letters)

• If using the potato reference genome, you could make the script read the ID matrix,
and output the annotation together with the ID.

© Jakob Willforss 2016 122

CHAPTER 8. INTRODUCTION TO SCRIPTING

8.6 Checkpoint

Before you continue, make sure that you can answer the following:

• How can scripts be used to make your research reproducible?

• Can you think of a Bash script which would be useful for you?

8.6.1 UNIX commands

Consider each command for a second. Make sure that you have an idea about what they do
before moving on.

Introduction to UNIX

man

ssh [-v]

Introduction to the file system

cd

ls [-l] [-lh]

pwd

Working with files in UNIX

cat

cp [-i]

file

head [-number]

less

mkdir

mv [-i]

nano

rm [-i] [-r]

rmdir

tail [-number]

Working with bioinformatic data

cut [-d] -f/-c

diff

grep [-c] [-A] [-v] [-f] [-i]

sort [-n] [-r]

uniq [-c]

wc [-l] [-w] [-m]

Organizing files

chmod

gunzip

gzip

ln [-s]

scp

tar [-cvzf] [-xvzf]

wget

File streams

echo

sed

tr [-d]

Pattern matching, variables, subshells
and loops

Bash scripting

© Jakob Willforss 2016 123

CHAPTER 8. INTRODUCTION TO SCRIPTING

8.7 Further reading

8.7.1 The PATH variable

The scripts we have been running in this chapter have all been used through their absolute
or relative paths. The UNIX commands on the other hands can be accessed from anywhere
without specifying any kind of path. The reason for this is that they are found in directories
which are stored in the PATH variable. This tells the UNIX system where to look for programs.
You can see the paths currently present in your PATH by printing it:

$ echo ${PATH}

More information on how to set up and use the PATH:

https://kb.iu.edu/d/acar

8.7.2 Further learning materials

If you enjoyed learning about scripting in Bash - Great! But there is a lot more to learn.
Both within Bash and in other languages. If you are interested in digging further into
programming a good next step could be to take a look at the Python programming language.
Python is a powerful language with a clear syntax (Bash is a powerful language with a very
messy syntax). Python is widely used to build everything from small scripts to extensive
applications.

A nice starting point for getting into Python is Codecademy’s interactive introductory
course:

https://www.codecademy.com/learn/python

It can sometimes be hard to navigate the available materials. The following page sum-
marizes, grades and reviews some online learning material of you are interested in digging
further into Bash:

http://wiki.bash-hackers.org/scripting/tutoriallist

Good luck with your future data processing and scripting!

© Jakob Willforss 2016 124

https://kb.iu.edu/d/acar
https://www.codecademy.com/learn/python
http://wiki.bash-hackers.org/scripting/tutoriallist

	Introduction to the course
	Acknowledgements
	Welcome
	The structure of this material
	Chapters
	Chapter structure

	How to find help
	The man command

	Accessing data
	ssh

	Exercises
	Connect to a remote computer
	Explore the man-pages
	Finding help on the internet (*)

	Checkpoint
	UNIX commands

	Further reading
	Make command run even if you close your terminal

	Introduction to the File System
	The UNIX file system
	A brief primer on paths

	Important file system commands
	pwd
	ls
	cd
	Demonstration

	Understanding paths
	Use tab completion
	Special directories
	The root directory (/)
	The home directory ()
	Current directory (.)
	Parent directory (..)

	Exercises
	Download the files to your home directory
	Trying out the file system commands
	Investigating file system

	Checkpoint
	UNIX commands

	Further reading
	Explore the system directories
	Hidden files

	Working with files in UNIX
	Files and file formats in UNIX
	Regular text files
	Binary files
	Compressed files

	File commands
	mv
	cp
	rm

	Folder commands
	mkdir
	rmdir
	rm -r

	Looking inside files
	cat
	head
	tail
	less

	Editing text
	nano

	Exercises
	Make and manage your own file
	FASTA management (*)

	Checkpoint
	UNIX commands

	Further reading
	Text editors

	Working with file content
	Important bioinformatic file formats
	The FASTA file format
	FASTQ
	GFF

	File content commands
	wc
	diff
	grep
	cut
	sort
	uniq

	Exercises
	Introduction to the exercise
	Exploring the FASTA file
	Exploring the FASTQ file
	Exploring the GFF file (*)
	Working with the annotation - Case study (**)

	Checkpoint
	UNIX commands

	Further reading
	Converting multi-line fasta to single-line fasta
	Useful tool: seqtk

	File permissions, organizing files and UNIX hygiene
	File permissions
	chmod
	Using file permissions

	gzip and tar archives
	gzip
	gunzip
	tar archives

	Downloading files
	wget

	Symbolic file links
	ln -s

	UNIX hygiene
	Backup your data
	Proper organization of your files
	Document your analyses
	Name your files properly

	Exercises
	Download the files to your home directory
	chmod
	Symbolic links
	Further work (*)

	Checkpoint
	UNIX commands

	Further reading
	Backup tool: rsync
	Organizing projects

	Working with file streams
	What are file streams?
	echo

	Redirecting input and output
	Standard output
	Standard error
	Standard input

	The pipe
	Filters
	tr
	sed

	Exercises
	Extracting information from GFF
	Stream editing
	Useful pipes
	The gene-count mystery (**)

	Checkpoint
	UNIX commands

	Further reading
	The tee command
	awk

	Pattern matching, variables, subshells and loops
	Pattern matching
	Pattern matching UNIX paths
	Using pattern matching with grep

	Variables
	What is a 'variable'?
	Variables in UNIX

	Subshells
	Loops
	Looping over a set of files

	Exercises
	Variables and subshells
	Loops and pattern matching
	Working with multiple files at once
	Processing multiple files (**)

	Checkpoint
	UNIX commands

	Further reading
	Variable expansion
	Regular expressions

	Introduction to scripting
	Bash and scripting
	Building a simple Bash script
	Comments in Bash scripts

	Gathering processing steps in a script
	Providing input to a script
	Exercises
	Hello, world!
	Retrieving information from a FASTA
	Building a useful script on your own (*)

	Checkpoint
	UNIX commands

	Further reading
	The PATH variable
	Further learning materials

